28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Prepartum Dietary Energy Level and Nicotinic Acid Supplementation on Immunological, Hematological and Biochemical Parameters of Periparturient Dairy Cows Differing in Parity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Several biological changes occur during the transition from late pregnancy to early lactation which is associated with a high susceptibility of health disorders. Nicotinic acid, as feed additive, is suggested to balance catabolic metabolism of periparturient dairy cows by attenuating lipolysis and impact production performance. This study provides information of the biological changes occurring around parturition with special emphasis on differences between primiparous and multiparous cows. Present results showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in dairy cows which were similar in body condition score. Nicotinic acid supplementation did not reveal any effect.

          Abstract

          The periparturient period is critical according to health, productivity and profitability. As this period is fundamental for the success of the lactation period, the interest in improving periparturient health by dietary supplements increased in recent years. The present study investigated the effects of feeding nicotinic acid (NA) combined with varying dietary energy densities on immunological, hematological and biochemical parameters of periparturient cows differing in parity. Thirty-six multiparous and 20 primiparous dairy cows were enrolled in the study 42 days before expected parturition date until 100 days postpartum with the half of the cows being supplemented with 24 g of NA/d. After parturition a diet with 30% concentrate was fed to all cows which was followed by different concentrate escalation strategies. Dietary NA supplementation was ceased on day 24 postpartum. Dietary NA increased ( P = 0.010) serum nicotinamide concentrations (mean of 3.35 ± 1.65 µg/mL), whereas NA could not be detected. Present data emphasize that periparturient cows are faced with major physiological challenges and that both parity-groups have different prerequisites to adapt to those changes irrespective of NA supplementation. The overfeeding of energy to cows which were similar in body condition score had only minor effects on periparturient immune system function and the metabolism of those cows.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.

          We show here the identity of Alamar Blue as resazurin. The 'resazurin reduction test' has been used for about 50 years to monitor bacterial and yeast contamination of milk, and also for assessing semen quality. Resazurin (blue and nonfluorescent) is reduced to resorufin (pink and highly fluorescent) which is further reduced to hydroresorufin (uncoloured and nonfluorescent). It is still not known how this reduction occurs, intracellularly via enzyme activity or in the medium as a chemical reaction, although the reduced fluorescent form of Alamar Blue was found in the cytoplasm and of living cells nucleus of dead cells. Recently, the dye has gained popularity as a very simple and versatile way of measuring cell proliferation and cytotoxicity. This dye presents numerous advantages over other cytotoxicity or proliferation tests but we observed several drawbacks to the routine use of Alamar Blue. Tests with several toxicants in different cell lines and rat primary hepatocytes have shown accumulation of the fluorescent product of Alamar Blue in the medium which could lead to an overestimation of cell population. Also, the extensive reduction of Alamar Blue by metabolically active cells led to a final nonfluorescent product, and hence an underestimation of cellular activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.

            Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein-coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nicotinic acid-induced antilipolytic effects in adipocytes. One of the major problems of the pharmacotherapeutical use of nicotinic acid is a strong flushing response. This side effect, although harmless, strongly affects patient compliance. In the present study, we show that mice lacking PUMA-G did not show nicotinic acid-induced flushing. In addition, flushing in response to nicotinic acid was also abrogated in the absence of cyclooxygenase type 1, and mice lacking prostaglandin D(2) (PGD(2)) and prostaglandin E(2) (PGE(2)) receptors had reduced flushing responses. The mouse orthologue of GPR109A, PUMA-G, is highly expressed in macrophages and other immune cells, and transplantation of wild-type bone marrow into irradiated PUMA-G-deficient mice restored the nicotinic acid-induced flushing response. Our data clearly indicate that GPR109A mediates nicotinic acid-induced flushing and that this effect involves release of PGE(2) and PGD(2), most likely from immune cells of the skin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows.

              An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n=24) and multiparous (n=23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NE(L))/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NE(L)/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS)=3.3], but were not overconditioned by parturition (BCS=3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                08 September 2015
                September 2015
                : 5
                : 3
                : 910-933
                Affiliations
                [1 ]Institute of Animal Nutrition, Friedrich-Loeffler-Insitute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Brunswick, Germany; E-Mails: reka.tienken@ 123456fli.bund.de (R.T.); susanne.kersten@ 123456fli.bund.de (S.K.); liane.huether@ 123456fli.bund.de (L.H.); ulrich.meyer@ 123456fli.bund.de (U.M.); sven.daenicke@ 123456fli.bund.de (S.D.)
                [2 ]Department of Physiology, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hanover, Germany
                [3 ]Clinic for Cattle, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hanover, Germany; E-Mail: juergen.rehage@ 123456tiho-hannover.de
                Author notes
                [†]

                Present address: Institute of Animal Nutrition, University of Hohenheim, 70599 Stuttgart, Germany; E-Mail: Korinna.Huber@ 123456uni-hohenheim.de

                [* ]Author to whom correspondence should be addressed; E-Mail: jana.frahm@ 123456fli.bund.de ; Tel.: +49-531-58044-142; Fax: +49-531-58044-299.
                Article
                animals-05-00391
                10.3390/ani5030391
                4598713
                ca022c8d-da12-4984-be30-d6d16eabfe36
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2015
                : 31 August 2015
                Categories
                Article

                periparturient,niacin,dairy cow,immune system,pbmc,cd4,cd8
                periparturient, niacin, dairy cow, immune system, pbmc, cd4, cd8

                Comments

                Comment on this article