8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Strength of the Carbon Nanotube-Based Space Elevator Cable: From Nano- to Mega-Mechanics

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper different deterministic and statistical models, based on new quantized theories proposed by the author, are presented to estimate the strength of a real, thus defective, space elevator cable. The cable, of ~100 megameters in length, is composed by carbon nanotubes, ~100 nanometers long: thus, its design involves from the nano- to the mega-mechanics. The predicted strengths are extensively compared with the experiments and the atomistic simulations on carbon nanotubes available in the literature. All these approaches unequivocally suggest that the megacable strength will be reduced by a factor at least of ~70% with respect to the theoretical nanotube strength, today (erroneously) assumed in the cable design. The reason is the unavoidable presence of defects in a so huge cable. Preliminary in silicon tensile experiments confirm the same finding. The deduced strength reduction is sufficient to pose in doubt the effective realization of the space elevator, that if built as today designed will surely break (according to the s opinion). The mechanics of the cable is also revised and possibly damage sources discussed.

          Related collections

          Author and article information

          Journal
          30 January 2006
          Article
          10.1088/0953-8984/18/33/S14
          cond-mat/0601668
          ca03dbb3-79ef-453f-bf98-7b570b9adf42
          History
          Custom metadata
          cond-mat.mtrl-sci

          Comments

          Comment on this article