13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Single-chain antigen-binding proteins.

          Single-chain antigen-binding proteins are novel recombinant polypeptides, composed of an antibody variable light-chain amino acid sequence (VL) tethered to a variable heavy-chain sequence (VH) by a designed peptide that links the carboxyl terminus of the VL sequence to the amino terminus of the VH sequence. These proteins have the same specificities and affinities for their antigens as the monoclonal antibodies whose VL and VH sequences were used to construct the recombinant genes that were expressed in Escherichia coli. Three of these proteins, one derived from the sequence for a monoclonal antibody to growth hormone and two derived from the sequences of two different monoclonal antibodies to fluorescein, were designed, constructed, synthesized, purified, and assayed. These proteins are expected to have significant advantages over monoclonal antibodies in a number of applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells

            Background The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable as immunoglobulins (Ig)G in many immunoassays. In contrast, the bivalent scFv-Fc antibody format shares many properties with IgG and has a very high application compatibility. Results In this study transient expression of scFv-Fc antibodies in human embryonic kidney (HEK) 293 cells was optimized. Production levels of 10-20 mg/L scFv-Fc antibody were achieved in adherent HEK293T cells. Employment of HEK293-6E suspension cells expressing a truncated variant of the Epstein Barr virus (EBV) nuclear antigen (EBNA) 1 in combination with production under serum free conditions increased the volumetric yield up to 10-fold to more than 140 mg/L scFv-Fc antibody. After vector optimization and process optimization the yield of an scFv-Fc antibody and a cytotoxic antibody-RNase fusion protein further increased 3-4-fold to more than 450 mg/L. Finally, an entirely new mammalian expression vector was constructed for single step in frame cloning of scFv genes from antibody phage display libraries. Transient expression of more than 20 different scFv-Fc antibodies resulted in volumetric yields of up to 600 mg/L and 400 mg/L in average. Conclusion Transient production of recombinant scFv-Fc antibodies in HEK293-6E in combination with optimized vectors and fed batch shake flasks cultivation is efficient and robust, and integrates well into a high-throughput recombinant antibody generation pipeline.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Amplification of complex gene libraries by emulsion PCR.

                Bookmark

                Author and article information

                Journal
                mAbs
                mAbs
                Informa UK Limited
                1942-0862
                1942-0870
                June 05 2017
                June 14 2017
                : 9
                : 6
                : 996-1006
                Article
                10.1080/19420862.2017.1337617
                5540111
                28613102
                ca0f9d52-d4a2-4753-8273-bbe617a573bd
                © 2017
                History

                Comments

                Comment on this article