68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The genetic basis of non-syndromic intellectual disability: a review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural variation of chromosomes in autism spectrum disorder.

            Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

              Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
                Bookmark

                Author and article information

                Contributors
                +1-416-5358501 , +1-416-9794666 , john_vincent@camh.net
                Journal
                J Neurodev Disord
                Journal of neurodevelopmental disorders
                Springer US (Boston )
                1866-1947
                1866-1955
                29 July 2010
                29 July 2010
                December 2010
                : 2
                : 4
                : 182-209
                Affiliations
                [1 ]Neuropsychiatry & Development Lab, Neurogenetics Section, R-30, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
                [2 ]Lahore Institute of Research and Development, Lahore, 54000 Pakistan
                [3 ]St. Luke’s Hospital, Middlesbrough, TS4 3AF UK
                [4 ]Department of Psychiatry, University of Durham, Durham, UK
                [5 ]Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
                Article
                9055
                10.1007/s11689-010-9055-2
                2974911
                21124998
                ca11942f-ba11-4a4b-a822-234401b986f4
                © The Author(s) 2010
                History
                : 9 March 2010
                : 25 June 2010
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC 2010

                Neurosciences
                genetic basis,convergent pathways,non-syndromic,intellectual disability
                Neurosciences
                genetic basis, convergent pathways, non-syndromic, intellectual disability

                Comments

                Comment on this article