14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clostridium perfringens beta-toxin is sensitive to thiol-group modification but does not require a thiol group for lethal activity.

      Biochimica et Biophysica Acta
      Amino Acid Sequence, Animals, Bacterial Toxins, chemistry, genetics, toxicity, Clostridium perfringens, pathogenicity, Cysteine, Gene Expression, Mice, Molecular Sequence Data, Mutagenesis, Site-Directed, Plasmids, Sulfhydryl Compounds

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The beta-toxin gene isolated from Clostridium perfringens type B was expressed as a glutathione S-transferase (GST) fusion gene in Escherichia coli. The purified GST-beta-toxin fusion protein from the E. coli transformant cells was not lethal. The N-terminal amino acid sequence of the recombinant beta-toxin (r toxin) isolated by thrombin cleavage of the fusion protein was G-S-N-D-I-G-K-T-T-T. Biological activities and molecular mass of r toxin were indistinguishable from those of native beta-toxin (n toxin) purified from C. perfringens type C. Replacement of Cys-265 with alanine or serine by site-directed mutagenesis resulted in little loss of the activity. Treatment of C265A with N-ethylmaleimide (NEM), which inactivated lethal activity of r toxin and n toxin, led to no loss of the activity. The substitution of tyrosine or histidine for Cys-265 significantly diminished lethal activity. In addition, treatment of C265H with ethoxyformic anhydride which specifically modifies histidyl residue resulted in significant decrease in lethal activity, but that of r toxin with the agent did not. These results showed that replacement of the cysteine residue at position 265 with amino acids with large size of side chain or introduction of functional groups in the position resulted in loss of lethal activity of the toxin. Replacement of Tyr-266, Leu-268 or Trp-275 resulted in complete loss of lethal activity. Simultaneous administration of r toxin and W275A led to a decrease in lethal activity of beta-toxin. These observations suggest that the site essential for the activity is close to the cysteine residue.

          Related collections

          Author and article information

          Comments

          Comment on this article