25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Altered Transforming Growth Factor-Beta Signaling in a Murine Model of Thoracic Aortic Aneurysm

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Thoracic aortic aneurysms (TAAs) develop by a multifactorial process involving maladaptive signaling pathways that alter the aortic vascular environment. Transforming growth factor-beta (TGF-β) has been implicated in regulating the structure and composition of the extracellular matrix by differential activation of various intracellular signaling pathways. However, whether and to what degree TGF-β signaling contributes to TAA development remains unclear. Accordingly, the hypothesis that alterations in TGF-β signaling occur during aneurysm formation was tested in a murine model of TAA. Methods: TAAs were surgically induced in mice (C57BL/6J) and aortas were analyzed at predetermined time points (1, 2, and 4 weeks post-TAA induction). Quantitative real-time PCR (QPCR) was performed to evaluate the expression of 84 relevant TGF-β superfamily genes, and the protein levels of key signaling intermediates were measured by immunoblotting. Results were compared to unoperated reference control mice. Results: QPCR revealed increased expression of TGF-β superfamily ligands (Gdf-2, -6, -7, Inhba), ligand inhibitors (Bmper, Chrd, Gsc), and transcriptional regulators (Dlx2, Evi1), among other genes (Cdkn2b, Igf1, IL-6). Protein levels of TGF-β receptor<sub>II</sub>, Smad2, Smad1/5/8, phospho-Smad1/5/8, and Smurf1 were increased from control values post-TAA induction. Both TGF-β receptor<sub>I</sub> and Smad4 were decreased from control values, while ALK-1 levels remained unchanged. Conclusions: These alterations in the TGF-β pathway suggest a mechanism by which primary signaling is switched from a TGF-βR<sub>I</sub>/Smad2-dependent response, to an ALK-1/Smad1/5/8 response, representing a significant change in signaling outcome, which may enhance matrix degradation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A comparison of rate control and rhythm control in patients with atrial fibrillation.

          There are two approaches to the treatment of atrial fibrillation: one is cardioversion and treatment with antiarrhythmic drugs to maintain sinus rhythm, and the other is the use of rate-controlling drugs, allowing atrial fibrillation to persist. In both approaches, the use of anticoagulant drugs is recommended. We conducted a randomized, multicenter comparison of these two treatment strategies in patients with atrial fibrillation and a high risk of stroke or death. The primary end point was overall mortality. A total of 4060 patients (mean [+/-SD] age, 69.7+/-9.0 years) were enrolled in the study; 70.8 percent had a history of hypertension, and 38.2 percent had coronary artery disease. Of the 3311 patients with echocardiograms, the left atrium was enlarged in 64.7 percent and left ventricular function was depressed in 26.0 percent. There were 356 deaths among the patients assigned to rhythm-control therapy and 310 deaths among those assigned to rate-control therapy (mortality at five years, 23.8 percent and 21.3 percent, respectively; hazard ratio, 1.15 [95 percent confidence interval, 0.99 to 1.34]; P=0.08). More patients in the rhythm-control group than in the rate-control group were hospitalized, and there were more adverse drug effects in the rhythm-control group as well. In both groups, the majority of strokes occurred after warfarin had been stopped or when the international normalized ratio was subtherapeutic. Management of atrial fibrillation with the rhythm-control strategy offers no survival advantage over the rate-control strategy, and there are potential advantages, such as a lower risk of adverse drug effects, with the rate-control strategy. Anticoagulation should be continued in this group of high-risk patients. Copyright 2002 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How cells read TGF-beta signals.

              Cell proliferation, differentiation and death are controlled by a multitude of cell-cell signals, and loss of this control has devastating consequences. Prominent among these regulatory signals is the transforming growth factor-beta (TGF-beta) family of cytokines, which can trigger a bewildering diversity of responses, depending on the genetic makeup and environment of the target cell. What are the networks of cell-specific molecules that mould the TGF-beta response to each cell's needs?
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2008
                October 2008
                23 April 2008
                : 45
                : 6
                : 457-468
                Affiliations
                Department of Surgery, Division of Cardiothoracic Surgery Research, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, S.C., USA
                Article
                127437 PMC2574785 J Vasc Res 2008;45:457–468
                10.1159/000127437
                PMC2574785
                18434745
                ca1a902a-cb22-4bdb-b985-9a4ae4cb372b
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 17 May 2007
                : 26 December 2007
                Page count
                Figures: 7, Tables: 1, References: 55, Pages: 12
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                TGF-β,Remodeling,Extracellular matrix,Signal transduction,Aneurysm

                Comments

                Comment on this article