58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although great progress has been made in clarifying deep-level angiosperm relationships, several early nodes in the angiosperm branch of the Tree of Life have proved difficult to resolve. Perhaps the last great question remaining in basal angiosperm phylogeny involves the branching order among the five major clades of mesangiosperms (Ceratophyllum, Chloranthaceae, eudicots, magnoliids, and monocots). Previous analyses have found no consistent support for relationships among these clades. In an effort to resolve these relationships, we performed phylogenetic analyses of 61 plastid genes ( approximately 42,000 bp) for 45 taxa, including members of all major basal angiosperm lineages. We also report the complete plastid genome sequence of Ceratophyllum demersum. Parsimony analyses of combined and partitioned data sets varied in the placement of several taxa, particularly Ceratophyllum, whereas maximum-likelihood (ML) trees were more topologically stable. Total evidence ML analyses recovered a clade of Chloranthaceae + magnoliids as sister to a well supported clade of monocots + (Ceratophyllum + eudicots). ML bootstrap and Bayesian support values for these relationships were generally high, although approximately unbiased topology tests could not reject several alternative topologies. The extremely short branches separating these five lineages imply a rapid diversification estimated to have occurred between 143.8 +/- 4.8 and 140.3 +/- 4.8 Mya.

          Related collections

          Author and article information

          Journal
          Proc Natl Acad Sci U S A
          Proceedings of the National Academy of Sciences of the United States of America
          Proceedings of the National Academy of Sciences
          1091-6490
          0027-8424
          Dec 04 2007
          : 104
          : 49
          Affiliations
          [1 ] Department of Botany and Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. michael.moore@oberlin.edu
          Article
          0708072104
          10.1073/pnas.0708072104
          2148295
          18048334
          ca2d9102-4f68-4b14-8c3b-917b5bcda9a2
          History

          Comments

          Comment on this article