3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      86Y-DOTA0)-D-Phe1-Tyr3-octreotide (SMT487)--a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion.

      European Journal of Nuclear Medicine and Molecular Imaging
      Adult, Aged, Amino Acids, administration & dosage, adverse effects, Arginine, Cohort Studies, Cross-Over Studies, Dizziness, etiology, Drug Combinations, Female, Humans, Infusions, Intravenous, Kidney, drug effects, metabolism, Lysine, Male, Metabolic Clearance Rate, Middle Aged, Neuroendocrine Tumors, radionuclide imaging, Octreotide, analogs & derivatives, blood, pharmacokinetics, urine, Organ Specificity, Radiation Dosage, Radiation Injuries, Radiation-Protective Agents, Radiometry, methods, Radiopharmaceuticals, Tissue Distribution, Tomography, Emission-Computed, Vomiting, Yttrium Radioisotopes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pharmacokinetics and dosimetry of (86)Y-DOTA(0)- d-Phe(1)-Tyr(3)-octreotide ((86)Y-SMT487) were evaluated in a phase I positron emission tomography (PET) study of 24 patients with somatostatin receptor-positive neuroendocrine tumours. The effect of amino acid (AA) co-infusion on renal and tumour uptake was assessed in a cross-over randomised setting. Five regimens were tested: no infusion, 4-h infusion of 120 g mixed AA (26.4 g l-lysine + l-arginine), 4 h l-lysine (50 g), 10 h 240 g mixed AA (52.8 g l-lysine + l-arginine) and 4 h Lys-Arg (25 g each). Comparisons were performed on an intra-patient basis. Infusions of AA started 0.5 h prior to injection of (86)Y-SMT487 and PET scans were obtained at 4, 24 and 48 h p.i. Absorbed doses to tissues were computed using the MIRD3 method. (86)Y-SMT487 displayed rapid plasma clearance and exclusive renal excretion; uptake was noted in kidneys, tumours, spleen and, to a lesser extent, liver. The 4-h mixed AA co-infusion significantly ( P<0.05) reduced (86)Y-SMT487 renal uptake by a mean of 21%. This protective effect was significant on the dosimetry data (3.3+/-1.3 vs 4.4+/-1.0 mGy/MBq; P<0.05) and was further enhanced upon prolonging the infusion to 10 h (2.1+/-0.4 vs 1.7+/-0.2 mGy/MBq; P<0.05). Infusion of Lys-Arg but not of l-lysine was more effective in reducing renal uptake than mixed AA. Infusion of AA did not result in reduced tumour uptake. The amount of (90)Y-SMT487 (maximum allowed dose: MAD) that would result in a 23-Gy cut-off dose to kidneys was calculated for each study: MAD was higher with mixed AA co-infusion by a mean of 46% (10-114%, P<0.05 vs no infusion). In comparison with 4 h mixed AA, the MAD was higher by a mean of 23% (9-37%; P<0.05) with prolonged infusion and by a mean of 16% (2-28%; P<0.05) with Lys-Arg. We conclude that infusion of large amounts of AA reduces renal exposure during peptide-based radiotherapy and allows higher absorbed doses to tumours. The prolongation of the infusion from 4 to 10 h further enhances the protective effect on the kidneys.

          Related collections

          Author and article information

          Comments

          Comment on this article