40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, a brain-computer interface (BCI) framework for hybrid functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and feature extraction and classification algorithms available in the literature are reviewed. First, we categorize various types of patients with cognitive and motor impairments to assess the suitability of BCI for each of them. The prefrontal cortex is identified as a suitable brain region for imaging. Second, the brain activity that contributes to the generation of hemodynamic signals is reviewed. Mental arithmetic and word formation tasks are found to be suitable for use with LIS patients. Third, since a specific targeted brain region is needed for BCI, methods for determining the region of interest are reviewed. The combination of a bundled-optode configuration and threshold-integrated vector phase analysis turns out to be a promising solution. Fourth, the usable fNIRS features and EEG features are reviewed. For hybrid BCI, a combination of the signal peak and mean fNIRS signals and the highest band powers of EEG signals is promising. For classification, linear discriminant analysis has been most widely used. However, further research on vector phase analysis as a classifier for multiple commands is desirable. Overall, proper brain region identification and proper selection of features will improve classification accuracy. In conclusion, five future research issues are identified, and a new BCI scheme, including brain therapy for LIS patients and using the framework of hybrid fNIRS-EEG BCI, is provided.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          A review of classification algorithms for EEG-based brain–computer interfaces

          In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems.

            With the advent of multi-channel EEG hardware systems and the concurrent development of topographic and tomographic signal source localization methods, the international 10/20 system, a standard system for electrode positioning with 21 electrodes, was extended to higher density electrode settings such as 10/10 and 10/5 systems, allowing more than 300 electrode positions. However, their effectiveness as relative head-surface-based positioning systems has not been examined. We previously developed a virtual 10/20 measurement algorithm that can analyze any structural MR head and brain image. Extending this method to the virtual 10/10 and 10/5 measurement algorithms, we analyzed the MR images of 17 healthy subjects. The acquired scalp positions of the 10/10 and 10/5 systems were normalized to the Montreal Neurological Institute (MNI) stereotactic coordinates and their spatial variability was assessed. We described and examined the effects of spatial variability due to the selection of positioning systems and landmark placement strategies. As long as a detailed rule for a particular system was provided, it yielded precise landmark positions on the scalp. Moreover, we evaluated the effective spatial resolution of 329 scalp landmark positions of the 10/5 system for multi-subject studies. As long as a detailed rule for landmark setting was provided, 241 scalp positions could be set effectively when there was no overlapping of two neighboring positions. Importantly, 10/10 positions could be well separated on a scalp without overlapping. This study presents a referential framework for establishing the effective spatial resolutions of 10/20, 10/10, and 10/5 systems as relative head-surface-based positioning systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Brain Computer Interfaces, a Review

              A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                28 June 2018
                2018
                : 12
                : 246
                Affiliations
                [1] 1Department of Cogno-Mechatronics Engineering, Pusan National University , Busan, South Korea
                [2] 2School of Mechanical Engineering, Pusan National University , Busan, South Korea
                [3] 3Early Learning, FIRST 5 Santa Clara County , San Jose, CA, United States
                Author notes

                Edited by: Srikantan S. Nagarajan, University of California, San Francisco, United States

                Reviewed by: Noman Naseer, Air University, Pakistan; Rifai Chai, University of Technology Sydney, Australia

                *Correspondence: Keum-Shik Hong kshong@ 123456pusan.ac.kr
                Article
                10.3389/fnhum.2018.00246
                6032997
                30002623
                ca40c0e0-6fcc-4c7d-a4ff-585198783d36
                Copyright © 2018 Hong, Khan and Hong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 February 2018
                : 29 May 2018
                Page count
                Figures: 9, Tables: 4, Equations: 31, References: 164, Pages: 25, Words: 17463
                Funding
                Funded by: National Research Foundation of Korea 10.13039/501100003725
                Award ID: NRF-2017R1A2A1A17069430
                Award ID: NRF-2017R1A4A1015627
                Categories
                Neuroscience
                Review

                Neurosciences
                brain-computer interface,electroencephalography,functional near-infrared spectroscopy,locked-in syndrome patient,feature extraction,classification

                Comments

                Comment on this article