9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha herpesvirus genomes encode the capacity to establish quiescent infections (i.e. latency) in the peripheral nervous system for the life of their hosts. Multiple times during latency, viral genomes can reactivate to start a productive infection, enabling spread of progeny virions to other hosts. Replication of alpha herpesviruses is well studied in cultured cells and many aspects of productive replication have been identified. However, many questions remain concerning how a productive or a quiescent infection is established. While infections in vivo often result in latency, infections of dissociated neuronal cultures in vitro result in a productive infection unless lytic viral replication is suppressed by DNA polymerase inhibitors or interferon. Using primary peripheral nervous system neurons cultured in modified Campenot tri-chambers, we previously reported that reactivateable, quiescent infections by pseudorabies virus (PRV) can be established in the absence of any inhibitor. Such infections were established in cell bodies only when physically isolated axons were infected at a very low multiplicity of infection (MOI). In this report, we developed a complementation assay in compartmented neuronal cultures to investigate host and viral factors in cell bodies that prevent establishment of quiescent infection and promote productive replication of axonally delivered genomes (i.e. escape from silencing). Stimulating protein kinase A (PKA) signaling pathways in isolated cell bodies, or superinfecting cell bodies with either UV-inactivated PRV or viral light particles (LP) promoted escape from genome silencing and prevented establishment of quiescent infection but with different molecular mechanisms. Activation of PKA in cell bodies triggers a slow escape from silencing in a cJun N-terminal kinase (JNK) dependent manner. However, escape from silencing is induced rapidly by infection with UVPRV or LP in a PKA- and JNK-independent manner. We suggest that viral tegument proteins delivered to cell bodies engage multiple signaling pathways that block silencing of viral genomes delivered by low MOI axonal infection.

          Author summary

          Alpha herpesvirus infections stay life-long in infected human and animal hosts`nervous systems in a silent state ready to reactivate upon various stress signals. Remarkably, infection of epithelial cells with these viruses results in productive infection whereas infection of peripheral nervous system neurons results in non-productive silent infection (i.e. latency) in the natural hosts. More interestingly, infection of dissociated peripheral neurons in culture also results in productive infection unless DNA replication inhibitors are used. To study the molecular mechanisms of escape from latency, we used primary neurons cultured in compartmented tri-chambers. By this way, we recapitulated the natural route of infection by infecting axons with low dose of virus which resulted in a silent infection in a small number of neuronal cell bodies without the use of any inhibitors. Using these cultures, we developed a new complementation assay to investigate the molecular signals leading to escape from latency and establishment of productive infection. We found two different mechanisms to escape from latency: Cellular stress-mediated slow route and viral tegument mediated-fast route. Furthermore, we showed that the stress-mediated pathway requires protein kinase A and c-Jun N-terminal kinase activity while the viral tegument-mediated fast escape does not require these host cell kinase activities. We also concluded that a general response to DNA virus infection or presence of excess herpesviral genomes in the nucleus to saturate silencing complexes is not enough to escape from latency. Induction of a productive infection requires presence of tegument proteins or activation of PKA and JNK pathway.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal Stress Pathway Mediating a Histone Methyl/Phospho Switch Is Required for Herpes Simplex Virus Reactivation.

          Herpes simplex virus (HSV) reactivation from latent neuronal infection requires stimulation of lytic gene expression from promoters associated with repressive heterochromatin. Various neuronal stresses trigger reactivation, but how these stimuli activate silenced promoters remains unknown. We show that a neuronal pathway involving activation of c-Jun N-terminal kinase (JNK), common to many stress responses, is essential for initial HSV gene expression during reactivation. This JNK activation in neurons is mediated by dual leucine zipper kinase (DLK) and JNK-interacting protein 3 (JIP3), which direct JNK toward stress responses instead of other cellular functions. Surprisingly, JNK-mediated viral gene induction occurs independently of histone demethylases that remove repressive lysine modifications. Rather, JNK signaling results in a histone methyl/phospho switch on HSV lytic promoters, a mechanism permitting gene expression in the presence of repressive lysine methylation. JNK is present on viral promoters during reactivation, thereby linking a neuronal-specific stress pathway and HSV reactivation from latency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency.

            The mechanism by which herpes simplex virus 1 (HSV-1) establishes latency in sensory neurons is largely unknown. Recent studies indicate that epigenetic modifications of the chromatin associated with the latent genome may play a key role in the transcriptional control of lytic genes during latency. In this study, we found both constitutive and facultative types of heterochromatin to be present on the latent HSV-1 genome. Deposition of the facultative marks trimethyl H3K27 and histone variant macroH2A varied at different sites on the genome, whereas the constitutive marker trimethyl H3K9 did not. In addition, we show that in the absence of the latency-associated transcript (LAT), the latent genome shows a dramatic increase in trimethyl H3K27, suggesting that expression of the LAT during latency may act to promote an appropriate heterochromatic state that represses lytic genes but is still poised for reactivation. Due to the presence of the mark trimethyl H3K27, we examined whether Polycomb group proteins, which methylate H3K27, were present on the HSV-1 genome during latency. Our data indicate that Bmi1, a member of the Polycomb repressive complex 1 (PRC1) maintenance complex, associates with specific sites in the genome, with the highest level of enrichment at the LAT enhancer. To our knowledge, these are the first data demonstrating that a virus can repress its gene transcription to enter latency by exploiting the mechanism of Polycomb-mediated repression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0.

              ND10 are nuclear domains of unknown function that become abundant in response to stress. Infection by herpes simplex virus type 1 (HSV-1) causes the apparent disappearance of these domains, an effect that requires the expression of the immediate early protein ICP0. Previously, we have shown that there are a number of cellular antigens in the ND10. In this report, we show that one of these proteins is PML, a member of the C3HC4 zinc-binding domain family which also includes ICP0. The C3HC4 domain of ICP0 is essential for the apparent release of PML from the ND10, although the interaction of ICP0 with ND10 is determined by a small region near its carboxy terminus. PML and other ND10 proteins are not lost after removal from ND10 but deposited at the nuclear envelope or nuclear envelope modifications during later parts of the replication cycle. ICP0 is required for the onset of low multiplicity infections, and has been implicated in the process of reactivation from HSV latency. Therefore, the interaction between ICP0 and the ND10 domains, specifically PML, may be important for the outcome of virus-cell interactions.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draft
                Role: Formal analysisRole: Funding acquisitionRole: MethodologyRole: Writing – review & editing
                Role: Formal analysisRole: SoftwareRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                26 October 2017
                October 2017
                : 13
                : 10
                : e1006608
                Affiliations
                [1 ] Department of Molecular Biology, and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
                [2 ] School of Life Sciences, and Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
                Duke University Medical Center, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-4038-9391
                http://orcid.org/0000-0002-3353-7176
                http://orcid.org/0000-0002-1977-5573
                http://orcid.org/0000-0001-9968-8586
                Article
                PPATHOGENS-D-17-01390
                10.1371/journal.ppat.1006608
                5658187
                29073268
                ca5a0c35-209d-4df3-b9a9-28c18a5d85db
                © 2017 Koyuncu et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 June 2017
                : 26 August 2017
                Page count
                Figures: 6, Tables: 0, Pages: 22
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: NS33506
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: NS060699
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: NS090640
                Award Recipient :
                We are supported by the following funding sources: NIH grants RO1 NS033506 and NS060699 (LWE) and F30 fellowship - NINDS F30 NS090640 (MAM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Tegument Proteins
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Nerve Fibers
                Axons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Nerve Fibers
                Axons
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Capsids
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Persistence and Latency
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Structure
                Virions
                Biology and Life Sciences
                Genetics
                Genomics
                Microbial Genomics
                Viral Genomics
                Biology and Life Sciences
                Microbiology
                Microbial Genomics
                Viral Genomics
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Genomics
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article