+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Working Memory Updating Training Improves Mathematics Performance in Middle School Students With Learning Difficulties

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Working memory (WM) deficit is considered the key cause of learning difficulties (LDs). Studies have shown that WM is plastic and thus can be improved through training. This positive effect is transferable to fluid intelligence and academic performance. This study investigated whether WM updating ability and academic performance in children with LDs could be improved through WM updating training and explored the effects of this training on the children’s brain activity. We used a running memory task lasting approximately 40 min per day for 28 days to train a group of 23 children with LDs (TLDs group). We also selected two control groups of 22 children with LDs (CLDs group) and 20 children without LDs (normal control [NC] group). The behavioral results of a pretest indicated that WM updating ability and academic performance in the TLDs and CLDs groups were significantly lower than those in the NC group before training. Compared with the CLDs group, the TLDs group exhibited significant performance improvement in a 2-back WM task, as well as in mathematical ability. Event-related potentials (ERPs) results suggested that the amplitudes of N160 (representative of visual recognition) and P300 (representative of updating processing, which is a valid index for updating WM) in the TLDs and CLDs groups were markedly lower than those in the NC group before training. In the TLDs group, these two components increased considerably after training, approaching levels similar to those in the NC group. The results of this study suggest that WM updating training can improve WM updating ability in children with LDs and the training effect can transfer to mathematical performance in such children. Furthermore, the participants’ brain activity levels can exhibit positive changes. This article provides experimental evidence that WM updating training could mitigate the symptoms of LDs to a certain degree.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: not found
          • Article: not found

          Working memory: looking back and looking forward.

           Alan Baddeley (2003)
            • Record: found
            • Abstract: found
            • Article: not found

            N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies.

            One of the most popular experimental paradigms for functional neuroimaging studies of working memory has been the n-back task, in which subjects are asked to monitor the identity or location of a series of verbal or nonverbal stimuli and to indicate when the currently presented stimulus is the same as the one presented n trials previously. We conducted a quantitative meta-analysis of 668 sets of activation coordinates in Talairach space reported in 24 primary studies of n-back task variants manipulating process (location vs. identity monitoring) and content (verbal or nonverbal) of working memory. We found the following cortical regions were activated robustly (voxelwise false discovery rate = 1%): lateral premotor cortex; dorsal cingulate and medial premotor cortex; dorsolateral and ventrolateral prefrontal cortex; frontal poles; and medial and lateral posterior parietal cortex. Subsidiary meta-analyses based on appropriate subsets of the primary data demonstrated broadly similar activation patterns for identity monitoring of verbal stimuli and both location and identity monitoring of nonverbal stimuli. There was also some evidence for distinct frontoparietal activation patterns in response to different task variants. The functional specializations of each of the major cortical components in the generic large-scale frontoparietal system are discussed. We conclude that quantitative meta-analysis can be a powerful tool for combining results of multiple primary studies reported in Talairach space. Here, it provides evidence both for broadly consistent activation of frontal and parietal cortical regions by various versions of the n-back working memory paradigm, and for process- and content-specific frontoparietal activation by working memory.
              • Record: found
              • Abstract: found
              • Article: not found

              Improving fluid intelligence with training on working memory.

              Fluid intelligence (Gf) refers to the ability to reason and to solve new problems independently of previously acquired knowledge. Gf is critical for a wide variety of cognitive tasks, and it is considered one of the most important factors in learning. Moreover, Gf is closely related to professional and educational success, especially in complex and demanding environments. Although performance on tests of Gf can be improved through direct practice on the tests themselves, there is no evidence that training on any other regimen yields increased Gf in adults. Furthermore, there is a long history of research into cognitive training showing that, although performance on trained tasks can increase dramatically, transfer of this learning to other tasks remains poor. Here, we present evidence for transfer from training on a demanding working memory task to measures of Gf. This transfer results even though the trained task is entirely different from the intelligence test itself. Furthermore, we demonstrate that the extent of gain in intelligence critically depends on the amount of training: the more training, the more improvement in Gf. That is, the training effect is dosage-dependent. Thus, in contrast to many previous studies, we conclude that it is possible to improve Gf without practicing the testing tasks themselves, opening a wide range of applications.

                Author and article information

                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                24 April 2018
                : 12
                1Faculty of Psychology, Beijing Normal University , Beijing, China
                2Department of Psychology, University of Macau , Macau, China
                3Department of Psychology, Nanjing University , Nanjing, China
                Author notes

                Edited by: Xiaolin Zhou, Peking University, China

                Reviewed by: Marian Berryhill, University of Nevada, Reno, United States; Qiang Liu, Liaoning Normal University, China

                *Correspondence: Renlai Zhou rlzhou@
                Copyright © 2018 Zhang, Chang, Chen, Ma and Zhou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Figures: 6, Tables: 4, Equations: 0, References: 82, Pages: 12, Words: 9659
                Original Research


                n160, p300, updating training, learning difficulties, working memory


                Comment on this article