29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references120

          • Record: found
          • Abstract: not found
          • Article: not found

          One-Dimensional Nanostructures: Synthesis, Characterization, and Applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanobelts of semiconducting oxides.

            Ultralong beltlike (or ribbonlike) nanostructures (so-called nanobelts) were successfully synthesized for semiconducting oxides of zinc, tin, indium, cadmium, and gallium by simply evaporating the desired commercial metal oxide powders at high temperatures. The as-synthesized oxide nanobelts are pure, structurally uniform, and single crystalline, and most of them are free from defects and dislocations. They have a rectanglelike cross section with typical widths of 30 to 300 nanometers, width-to-thickness ratios of 5 to 10, and lengths of up to a few millimeters. The beltlike morphology appears to be a distinctive and common structural characteristic for the family of semiconducting oxides with cations of different valence states and materials of distinct crystallographic structures. The nanobelts could be an ideal system for fully understanding dimensionally confined transport phenomena in functional oxides and building functional devices along individual nanobelts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZnO nanowire UV photodetectors with high internal gain.

              ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau approximately 20 ns) and slow (tau approximately 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than approximately 10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Solid State and Materials Sciences
                Critical Reviews in Solid State and Materials Sciences
                Informa UK Limited
                1040-8436
                1547-6561
                December 04 2009
                December 04 2009
                : 34
                : 3-4
                : 190-223
                Article
                10.1080/10408430903245393
                ca622aa6-4491-45b4-8cce-45b576882fd7
                © 2009
                History

                Comments

                Comment on this article