100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microfluidics-based diagnostics of infectious diseases in the developing world

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the great challenges in science and engineering today is to develop technologies to improve the health of people in the poorest regions of the world. Here we integrated new procedures for manufacturing, fluid handling and signal detection in microfluidics into a single, easy-to-use point-of-care (POC) assay that faithfully replicates all steps of ELISA, at a lower total material cost. We performed this 'mChip' assay in Rwanda on hundreds of locally collected human samples. The chip had excellent performance in the diagnosis of HIV using only 1 μl of unprocessed whole blood and an ability to simultaneously diagnose HIV and syphilis with sensitivities and specificities that rival those of reference benchtop assays. Unlike most current rapid tests, the mChip test does not require user interpretation of the signal. Overall, we demonstrate an integrated strategy for miniaturizing complex laboratory assays using microfluidics and nanoparticles to enable POC diagnostics and early detection of infectious diseases in remote settings.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Microfluidic large-scale integration.

          We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microfluidic diagnostic technologies for global public health.

            The developing world does not have access to many of the best medical diagnostic technologies; they were designed for air-conditioned laboratories, refrigerated storage of chemicals, a constant supply of calibrators and reagents, stable electrical power, highly trained personnel and rapid transportation of samples. Microfluidic systems allow miniaturization and integration of complex functions, which could move sophisticated diagnostic tools out of the developed-world laboratory. These systems must be inexpensive, but also accurate, reliable, rugged and well suited to the medical and social contexts of the developing world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey.

              Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food and environmental settings. We describe principles of current formats, applications, limitations and perspectives for quantitative monitoring. We illustrate the potentials and limitations of analysis with lateral flow (immuno)assays using a literature survey and a SWOT analysis (acronym for "strengths, weaknesses, opportunities, threats"). Articles referred to in this survey were searched for on MEDLINE, Scopus and in references of reviewed papers. Search terms included "immunochromatography", "sol particle immunoassay", "lateral flow immunoassay" and "dipstick assay".
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                August 2011
                July 31 2011
                August 2011
                : 17
                : 8
                : 1015-1019
                Article
                10.1038/nm.2408
                21804541
                ca65546a-f7d7-4fbc-9695-43fd8bedd712
                © 2011

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article