19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epinephrine Produces a β-Adrenergic Receptor-Mediated Mechanical Hyperalgesia and In Vitro Sensitization of Rat Nociceptors

      1 , 1 , 1
      Journal of Neurophysiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epinephrine produces a β-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of nociceptor-like neurons in the rat. Hyperalgesic and nociceptor sensitizing effects mediated by the β-adrenergic receptor were evaluated in the rat. Intradermal injection of epinephrine, the major endogenous ligand for the β-adrenergic receptor, into the dorsum of the hindpaw of the rat produced a dose-dependent mechanical hyperalgesia, quantified by the Randall-Selitto paw-withdrawal test. Epinephrine-induced hyperalgesia was attenuated significantly by intradermal pretreatment with propranolol, a β-adrenergic receptor antagonist, but not by phentolamine, an α-adrenergic receptor antagonist. Epinephrine-induced hyperalgesia developed rapidly; it was statistically significant by 2 min after injection, reached a maximum effect within 5 min, and lasted 2 h. Injection of a more β-adrenergic receptor-selective agonist, isoproterenol, also produced dose-dependent hyperalgesia, which was attenuated by propranolol but not phentolamine. Epinephrine-induced hyperalgesia was not affected by indomethacin, an inhibitor of cyclo-oxygenase, or by surgical sympathectomy. It was attenuated significantly by inhibitors of the adenosine 3′,5′-cyclic monophosphate signaling pathway (the adenylyl cyclase inhibitor, SQ 22536, and the protein kinase A inhibitors, Rp-adenosine 3′,5′-cyclic monophosphate and WIPTIDE), inhibitors of the protein kinase C signaling pathway (chelerythrine and bisindolylmaleimide) and a μ-opioid receptor agonist DAMGO ([d-Ala 2,N-Me-Phe 4,Gly 5-ol]-enkephalin). Consistent with the hypothesis that epinephrine produces hyperalgesia by a direct action on primary afferent nociceptors, it was found to sensitize small-diameter dorsal root ganglion neurons in culture, i.e., to produce an increase in number of spikes and a decrease in latency to firing during a ramped depolarizing stimulus. These effects were blocked by propranolol. Furthermore epinephrine, like several other direct-acting hyperalgesic agents, caused a potentiation of tetrodotoxin-resistant sodium current, an effect that was abolished by Rp-adenosine 3′,5′-cyclic monophosphate and significantly attenuated by bisindolylmaleimide. Isoproterenol also potentiated tetrodotoxin-resistant sodium current. In conclusion, epinephrine produces cutaneous mechanical hyperalgesia and sensitizes cultured dorsal root ganglion neurons in the absence of nerve injury via an action at a β-adrenergic receptor. These effects of epinephrine are mediated by both the protein kinase A and protein kinase C second-messenger pathways.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons.

          Dorsal root ganglion sensory neurons associated with C-fibres, many of which are activated by tissue-damage, express an unusual voltage-gated sodium channel that is resistant to tetrodotoxin. We report here that we have identified a 1,957 amino-acid sodium channel in these cells that shows 65% identity with the rat cardiac tetrodotoxin-insensitive sodium channel, and is not expressed in other peripheral and central neurons, glia or non-neuronal tissues. In situ hybridization shows that the channel is expressed only by small-diameter sensory neurons in neonatal and adult dorsal root and trigeminal ganglia. The channel is resistant to tetrodotoxin when expressed in Xenopus oocytes. The electrophysiological and pharmacological properties of the expressed channel are similar to those described for the small-diameter sensory neuron tetrodotoxin-resistant sodium channels. As some noxious input into the spinal cord is resistant to tetrodotoxin, block of expression or function of such a C-fibre-restricted sodium channel may have a selective analgesic effect.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors.

            Sensitization of primary afferent neurons underlies much of the pain and tenderness associated with tissue injury and inflammation. The increase in excitability is caused by chemical agents released at the site of injury. Because recent studies suggest that an increase in voltage-gated Na+ currents may underlie increases in neuronal excitability associated with injury, we have tested the hypothesis that a tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa), selectively expressed in a subpopulation of sensory neurons with properties of nociceptors, is a target for hyperalgesic agents. Our results indicate that three agents that produce tenderness or hyperalgesia in vivo, prostaglandin E2, adenosine, and serotonin, modulate TTX-R INa. These agents increase the magnitude of the current, shift its conductance-voltage relationship in a hyperpolarized direction, and increase its rate of activation and inactivation. In contrast, thromboxane B2, a cyclooxygenase product that does not produce hyperalgesia, did not affect TTX-R INa. These results suggest that modulation of TTX-R INa is a mechanism for sensitization of mammalian nociceptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade.

              1. In current-clamp recordings, 1 microM prostaglandin E2 (PGE2) increased the excitability of neonatal rat dorsal root ganglion neurones. The current threshold for firing was reduced, and the response to a constant suprathreshold stimulation was modified such that a single evoked action potential was converted to a train of action potentials. The excitatory action of PGE2 was still apparent when action potentials were evoked in the presence of 500 nM tetrodotoxin. 2. In voltage-clamp experiments 1 microM PGE2 frequently increased the magnitude of the peak currents recorded, and caused a hyperpolarizing shift (of approximately 6 mV) in the activation curve for the tetrodotoxin-resistant sodium current (TTX-R INa). In some cells, the hyperpolarizing shift in the activation curve was accompanied by a decrease in peak conductance. PGE2 also caused a hyperpolarizing shift in the steady-state inactivation curve for the sodium current. 3. Extracellular application of the cAMP analogue dibutyryl cAMP (dbcAMP) at a concentration of 1 mM produced effects on both the current-voltage relationship and the steady-state inactivation curve for the TTX-R INa which were indistinguishable from those observed with PGE2. Prior exposure of the neurones to dbcAMP occluded the effect of a subsequent treatment with PGE2. 4. Forskolin (10 microM), a direct activator of adenylate cyclase, mimicked the effects of PGE2 and dbcAMP on TTX-R INa. The inactive congener of forskolin, 1, 9-dideoxyforskolin (10 microM), reduced the amplitude of TTX-R INa, but did not evoke a hyperpolarizing shift in the activation curve. 5. Intracellular perfusion of the neurones with an inhibitor of protein kinase A inhibited the effect of PGE2 on TTX-R INa. 6. PGE2 also reduced the amplitude of voltage-gated potassium currents (IK), which will contribute to the excitatory action. The mechanisms underlying the changes in IK have yet to be elucidated. 7. We propose that the PGE2-mediated increase in excitability in sensory neurones may be due, at least in part, to the cAMP-protein kinase A-dependent modulation of the tetrodotoxin-resistant sodium channel.
                Bookmark

                Author and article information

                Journal
                Journal of Neurophysiology
                Journal of Neurophysiology
                American Physiological Society
                0022-3077
                1522-1598
                March 01 1999
                March 01 1999
                : 81
                : 3
                : 1104-1112
                Affiliations
                [1 ]Departments of Medicine and Oral and Maxillofacial Surgery, Division of Neuroscience and Biomedical Sciences Program, National Institutes of Health Pain Center (UCSF), University of California, San Francisco, California 94143-0440
                Article
                10.1152/jn.1999.81.3.1104
                10085337
                ca65e410-6f4c-446f-8a0b-6cd9dc6f8ec3
                © 1999
                History

                Comments

                Comment on this article