10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of lncRNA FOXD3-AS1 as a Biomarker for Early-Stage Lung Cancer Diagnosis and Subtype Identification

      research-article
      , , ,
      Evidence-based Complementary and Alternative Medicine : eCAM
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Lung cancer (LC) is the most commonly diagnosed cancer and the leading cause of cancer-related deaths. More and more long noncoding RNA (lncRNA) are associated with cancer. This study aimed to assess whether plasma lncRNA could be used to diagnose early-stage LC and identify subtypes of LC.

          Methods

          For bioinformatic analysis, we used genetic data from the Cancer Genome Atlas, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC) datasets and a small cell lung cancer (SCLC) dataset from the Gene Expression Omnibus. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to examine the relative expression of lncRNA in LC tissues and plasma samples. The patients' clinical information was obtained at the time of sample collection.

          Results

          According to public datasets, the lncRNA forkhead box D3 antisense 1 (FOXD3-AS1) was significantly upregulated in LUAD, LUSC, and SCLC tissues over controls. RT-qPCR assays confirmed this finding in LUAD, LUSC, and SCLC tissues and plasma samples. Even early-stage receiver operating characteristic analysis showed that plasma FOXD3-AS1 could be used to discriminate LUAD, LUSC, and SCLC from normal controls and identify LC subtypes SCLC.

          Conclusion

          FOXD3-AS1 is significantly upregulated in LC tissues and plasma. FOXD3-AS1 could be a potential biomarker for LC subtype identification and early diagnosis.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The biology and management of non-small cell lung cancer.

          Important advancements in the treatment of non-small cell lung cancer (NSCLC) have been achieved over the past two decades, increasing our understanding of the disease biology and mechanisms of tumour progression, and advancing early detection and multimodal care. The use of small molecule tyrosine kinase inhibitors and immunotherapy has led to unprecedented survival benefits in selected patients. However, the overall cure and survival rates for NSCLC remain low, particularly in metastatic disease. Therefore, continued research into new drugs and combination therapies is required to expand the clinical benefit to a broader patient population and to improve outcomes in NSCLC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analyzing real-time PCR data by the comparative C(T) method.

            Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene regulation by long non-coding RNAs and its biological functions

              Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                14 September 2022
                14 September 2022
                : 2022
                : 5702014
                Affiliations
                Department of Pathology, Traditional Chinese Medicine Hospital of LuAn, Lu'an 237006, Anhui, China
                Author notes

                Academic Editor: Xueliang Wu

                Author information
                https://orcid.org/0000-0002-7391-4896
                Article
                10.1155/2022/5702014
                9492367
                36159563
                ca6dd837-0aca-427e-81b4-839ba24e4e43
                Copyright © 2022 Xiaofeng Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 July 2022
                : 22 July 2022
                : 20 August 2022
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article