19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.

          Related collections

          Most cited references346

          • Record: found
          • Abstract: found
          • Article: not found

          Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.

          The cytosine analogues 5-azacytosine (azacytidine) and 2'-deoxy-5-azacytidine (decitabine) are the currently most advanced drugs for epigenetic cancer therapies. These compounds function as DNA methyltransferase inhibitors and have shown substantial potency in reactivating epigenetically silenced tumor suppressor genes in vitro. However, it has been difficult to define the mode of action of these drugs in patients and it appears that clinical responses are influenced both by epigenetic alterations and by apoptosis induction. To maximize the clinical efficacy of azacytidine and decitabine it will be important to understand the molecular changes induced by these drugs. In this review, we examine the pharmacological properties of azanucleosides and their interactions with various cellular pathways. Because azacytidine and decitabine are prodrugs, an understanding of the cellular mechanisms mediating transmembrane transport and metabolic activation will be critically important for optimizing patient responses. We also discuss the mechanism of DNA methyltransferase inhibition and emphasize the need for the identification of predictive biomarkers for the further advancement of epigenetic therapies. (c) 2008 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity.

            Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4-100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across the three cohorts (P = 0.021, 2.1 × 10(-5) and 0.0054, respectively; meta-analysis P = 4.45 × 10(-8), allelic effect size = -11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes.

              Azathioprine and its metabolite 6-mercaptopurine (6-MP) are immunosuppressive drugs that are used in organ transplantation and autoimmune and chronic inflammatory diseases such as Crohn disease. However, their molecular mechanism of action is unknown. In the present study, we have identified a unique and unexpected role for azathioprine and its metabolites in the control of T cell apoptosis by modulation of Rac1 activation upon CD28 costimulation. We found that azathioprine and its metabolites induced apoptosis of T cells from patients with Crohn disease and control patients. Apoptosis induction required costimulation with CD28 and was mediated by specific blockade of Rac1 activation through binding of azathioprine-generated 6-thioguanine triphosphate (6-Thio-GTP) to Rac1 instead of GTP. The activation of Rac1 target genes such as mitogen-activated protein kinase kinase (MEK), NF-kappaB, and bcl-x(L) was suppressed by azathioprine, leading to a mitochondrial pathway of apoptosis. Azathioprine thus converts a costimulatory signal into an apoptotic signal by modulating Rac1 activity. These findings explain the immunosuppressive effects of azathioprine and suggest that 6-Thio-GTP derivates may be useful as potent immunosuppressive agents in autoimmune diseases and organ transplantation.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                23 July 2018
                July 2018
                : 10
                : 7
                : 240
                Affiliations
                [1 ]Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; nikolaos.tsesmetzis@ 123456ki.se
                [2 ]Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden; cynthia.paulin@ 123456scilifelab.se
                [3 ]Paediatric Oncology, Theme of Children’s and Women’s Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
                Author notes
                Author information
                https://orcid.org/0000-0002-4368-3855
                https://orcid.org/0000-0001-9468-4543
                Article
                cancers-10-00240
                10.3390/cancers10070240
                6071274
                30041457
                ca768021-d1e7-44b5-9675-a3e33bec588c
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2018
                : 20 July 2018
                Categories
                Review

                chemoresistance,sensitisation,novel therapy,combination therapy,antimetabolites,nucleoside analogues,nucleobase analogues,cytarabine,gemcitabine,clofarabine,fludarabine,nelarabine,cladribine,5-fluorouracil,capecitabine,samhd1,ribonucleotide reductase,precision medicine

                Comments

                Comment on this article