3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of plasma somatostatin with disease severity and progression in patients with autosomal dominant polycystic kidney disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Somatostatin (SST) inhibits intracellular cyclic adenosine monophosphate (cAMP) production and thus may modify cyst formation in autosomal dominant polycystic kidney disease (ADPKD). We investigated whether endogenous plasma SST concentration is associated with disease severity and progression in patients with ADPKD, and whether plasma SST concentrations change during treatment with a vasopressin V2 receptor antagonist or SST analogue.

          Methods

          In this observational study, fasting concentrations of SST were measured in 127 ADPKD patients (diagnosed upon the revised Ravine criteria) by ELISA. cAMP was measured in 24 h urine by Radio Immuno Assay. Kidney function was measured (mGFR) as 125I-iothalamate clearance, and total kidney volume was measured by MRI volumetry and adjusted for height (htTKV). Disease progression was expressed as annual change in mGFR and htTKV. Additionally, baseline versus follow-up SST concentrations were compared in ADPKD patients during vasopressin V2 receptor antagonist (tolvaptan) ( n = 27) or SST analogue (lanreotide) treatment ( n = 25).

          Results

          In 127 ADPKD patients, 41 ± 11 years, 44% female, eGFR 73 ± 32 ml/min/1.73m 2, mGFR 75 ± 32 ml/min/1.73m 2 and htTKV 826 (521–1297) ml/m, SST concentration was 48.5 (34.3–77.8) pg/ml. At baseline, SST was associated with urinary cAMP, mGFR and htTKV ( p = 0.02, p = 0.004 and p = 0.02, respectively), but these associations lost significance after adjustment for age and sex or protein intake ( p = 0.09, p = 0.06 and p = 0.15 respectively). Baseline SST was not associated with annual change in mGFR, or htTKV during follow-up (st. β = − 0.02, p = 0.87 and st. β = − 0.07, p = 0.54 respectively). During treatment with tolvaptan SST levels remained stable 38.2 (23.8–70.7) pg/mL vs. 39.8 (31.2–58.5) pg/mL, p = 0.85), whereas SST levels decreased significantly during treatment with lanreotide (42.5 (33.2–55.0) pg/ml vs. 29.3 (24.8–37.6), p = 0.008).

          Conclusions

          Fasting plasma SST concentration is not associated with disease severity or progression in patients with ADPKD. Treatment with lanreotide caused a decrease in SST concentration. These data suggest that plasma SST cannot be used as a biomarker to assess prognosis in ADPKD, but leave the possibility open that change in SST concentration during lanreotide treatment may reflect therapy efficacy.

          Electronic supplementary material

          The online version of this article (10.1186/s12882-018-1176-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Autosomal dominant polycystic kidney disease.

          Autosomal dominant polycystic kidney disease is the most prevalent, potentially lethal, monogenic disorder. It is associated with large interfamilial and intrafamilial variability, which can be explained to a large extent by its genetic heterogeneity and modifier genes. An increased understanding of the disorder's underlying genetic, molecular, and cellular mechanisms and a better appreciation of its progression and systemic manifestations have laid out the foundation for the development of clinical trials and potentially effective treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatostatin and its receptor family.

            Y C Patel (1999)
            Somatostatin (SST), a regulatory peptide, is produced by neuroendocrine, inflammatory, and immune cells in response to ions, nutrients, neuropeptides, neurotransmitters, thyroid and steroid hormones, growth factors, and cytokines. The peptide is released in large amounts from storage pools of secretory cells, or in small amounts from activated immune and inflammatory cells, and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells that are widely distributed in the brain and periphery. These actions are mediated by a family of seven transmembrane (TM) domain G-protein-coupled receptors that comprise five distinct subtypes (termed SSTR1-5) that are endoded by separate genes segregated on different chromosomes. The five receptor subtypes bind the natural SST peptides, SST-14 and SST-28, with low nanomolar affinity. Short synthetic octapeptide and hexapeptide analogs bind well to only three of the subtypes, 2, 3, and 5. Selective nonpeptide agonists with nanomolar affinity have been developed for four of the subtypes (SSTR1, 2, 3, and 4) and putative peptide antagonists for SSTR2 and SSTR5 have been identified. The ligand binding domain for SST ligands is made up of residues in TMs III-VII with a potential contribution by the second extracellular loop. SSTRs are widely expressed in many tissues, frequently as multiple subtypes that coexist in the same cell. The five receptors share common signaling pathways such as the inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase (PTP), and modulation of mitogen-activated protein kinase (MAPK) through G-protein-dependent mechanisms. Some of the subtypes are also coupled to inward rectifying K(+) channels (SSTR2, 3, 4, 5), to voltage-dependent Ca(2+) channels (SSTR1, 2), a Na(+)/H(+) exchanger (SSTR1), AMPA/kainate glutamate channels (SSTR1, 2), phospholipase C (SSTR2, 5), and phospholipase A(2) (SSTR4). SSTRs block cell secretion by inhibiting intracellular cAMP and Ca(2+) and by a receptor-linked distal effect on exocytosis. Four of the receptors (SSTR1, 2, 4, and 5) induce cell cycle arrest via PTP-dependent modulation of MAPK, associated with induction of the retinoblastoma tumor suppressor protein and p21. In contrast, SSTR3 uniquely triggers PTP-dependent apoptosis accompanied by activation of p53 and the pro-apoptotic protein Bax. SSTR1, 2, 3, and 5 display acute desensitization of adenylyl cyclase coupling. Four of the subtypes (SSTR2, 3, 4, and 5) undergo rapid agonist-dependent endocytosis. SSTR1 fails to be internalized but is instead upregulated at the membrane in response to continued agonist exposure. Among the wide spectrum of SST effects, several biological responses have been identified that display absolute or relative subtype selectivity. These include GH secretion (SSTR2 and 5), insulin secretion (SSTR5), glucagon secretion (SSTR2), and immune responses (SSTR2). Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease

              In a previous trial involving patients with early autosomal dominant polycystic kidney disease (ADPKD; estimated creatinine clearance, ≥60 ml per minute), the vasopressin V2-receptor antagonist tolvaptan slowed the growth in total kidney volume and the decline in the estimated glomerular filtration rate (GFR) but also caused more elevations in aminotransferase and bilirubin levels. The efficacy and safety of tolvaptan in patients with later-stage ADPKD are unknown.
                Bookmark

                Author and article information

                Contributors
                0031-50-3616161 , a.l.messchendorp@umcg.nl
                emspithoven@gmail.com
                n.f.casteleijn@umcg.nl
                w.a.dam01@umcg.nl
                j.van.den.born@umcg.nl
                wtonnis@gmail.com
                c.a.j.m.gaillard@umcutrecht.nl
                esther.meijer@umcg.nl
                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central (London )
                1471-2369
                19 December 2018
                19 December 2018
                2018
                : 19
                : 368
                Affiliations
                [1 ]Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [2 ]Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [3 ]ISNI 0000 0004 0407 1981, GRID grid.4830.f, Department of Pharmaceutical Technology and Biopharmacy, , University of Groningen, ; Groningen, The Netherlands
                [4 ]Division of Internal Medicine and Dermatology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
                Article
                1176
                10.1186/s12882-018-1176-y
                6299932
                30567514
                ca7d1f1f-5104-45e0-9b4d-3a62ba0aa1d2
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 March 2018
                : 5 December 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Nephrology
                adpkd,somatostatin,biomarker,camp,disease progression
                Nephrology
                adpkd, somatostatin, biomarker, camp, disease progression

                Comments

                Comment on this article