12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skeletal muscle as potential central link between sarcopenia and immune senescence

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As our population grows older, age-related pathologies are becoming more prevalent. Deterioration of skeletal muscle and the immune system manifests as sarcopenia and immune senescence respectively. The disease burden of these pathologies emphasizes the need for a better understanding of the underlying mechanisms. Skeletal muscle has emerged as a potent regulator of immune system function. As such, skeletal muscle might be the central integrator between sarcopenia and immune senescence in an aging biological system. Therapeutic approaches targeting skeletal muscle might be able to restore both muscle and immune system function. In this review, we therefore outline the current - however still fragmentary - knowledge about the potential communication pathways of muscle and immune system, how they are affected by aging of skeletal muscle and discuss possible treatment strategies. The review intends to be hypothesis-generating and should thereby stimulate further research in this important scientific field.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans.

          The purpose of the present study was to test the hypothesis that a transient increase in plasma IL-6 induces an anti-inflammatory environment in humans. Therefore, young healthy volunteers received a low dose of recombinant human (rh)IL-6 or saline for 3 h. Plasma IL-6 levels during rhIL-6 infusion were approximately 140 pg/ml, corresponding to the levels obtained during strenuous exercise. The infusion of rhIL-6 did not induce enhanced levels of the proinflammatory cytokine TNF-alpha but enhanced the plasma levels of the two anti-inflammatory cytokines IL-1 receptor agonist (IL-1ra) and IL-10 compared with saline infusion. In addition, C-reactive protein increased 3 h post-rhIL-6 infusion and was further elevated 16 h later compared with saline infusion. rhIL-6 induced increased levels of plasma cortisol and, consequently, an increase in circulating neutrophils and a decrease in the lymphocyte number without effects on plasma epinephrine, body temperature, mean arterial pressure, or heart rate. In conclusion, this study demonstrates that physiological concentrations of IL-6 induce an anti-inflammatory rather than an inflammatory response in humans and that IL-6, independently of TNF-alpha, enhances the levels not only of IL-1ra but also of IL-10. Furthermore, IL-6 induces an increase in cortisol and, consequently, in neutrocytosis and late lymphopenia to the same magnitude and with the same kinetics as during exercise, suggesting that muscle-derived IL-6 has a central role in exercise-induced leukocyte trafficking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer.

            Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interleukin‐6 myokine signaling in skeletal muscle: a double‐edged sword?

              Interleukin (IL)‐6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL‐6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL‐6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL‐6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL‐6. Paradoxically, deleterious actions for IL‐6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                26 October 2019
                November 2019
                26 October 2019
                : 49
                : 381-388
                Affiliations
                [0001]Clinic of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
                Author notes
                [* ]Corresponding author. Department of Neurology with Institute for Translational Neurology, University of Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany. tobias.ruck@ 123456ukmuenster.de
                Article
                S2352-3964(19)30704-2
                10.1016/j.ebiom.2019.10.034
                6945275
                31662290
                ca80da62-450b-4102-87a9-9002f8e9f51d
                © 2019 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 August 2019
                : 30 September 2019
                : 17 October 2019
                Categories
                Review

                skeletal muscle,sarcopenia,immune senescence,myokines,il-6, il-7,il-15

                Comments

                Comment on this article