39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To explore the basis of metastasis, we compared the human breast cancer lines MCF-7 and MDA-MB453, which have low invasive ability, with their sublines MCF7-I4 and MDA-MB453-I4 with high invasive ability for gene expression and signaling pathways. We previously showed that the I4 lines had dramatically elevated levels of Twist compared with their parental lines. In this study, we observed significantly increased STAT3 Tyr(705) phosphorylation, but not the STAT3 protein levels, in the I4 lines. Activation of STAT3 by interleukin-6 or expression of activated Src induced Twist expression at protein and mRNA levels. Inhibiting STAT3 by a small molecule inhibitor, JSI-124, STAT3 small hairpin RNAs, or dominant negative STAT3 resulted in significant reduction of Twist protein and mRNA expression. STAT3 directly bound to the second proximal STAT3-binding site on the human Twist promoter and activated its transcriptional activity. Inhibition of STAT3 reduced migration, invasion, and colony formation of the I4 cells. Ectopic expression of Twist significantly rescued those phenotypes. Ten normal and 46 tumor specimens of breast tissues were examined for activation of STAT3 and expression of Twist. There was a strong correlation between Tyr(705) p-STAT3 and Twist level in the late stage tumor tissues. Our results indicate that activated STAT3 transcriptionally induces Twist, which plays an important role in promoting migration, invasion, and anchorage-independent growth. Together with our previous observation that Twist transcriptionally induces AKT2 to mediate Twist-promoted oncogenic functions, we conclude that STAT3, Twist, and AKT2 form a functional signaling axis to regulate pivotal oncogenic properties of cancer cells.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          May 23 2008
          : 283
          : 21
          Affiliations
          [1 ] Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
          Article
          S0021-9258(20)54335-4
          10.1074/jbc.M707429200
          2386910
          18353781
          ca8722fe-8e38-426d-97e5-520d72ed424f
          History

          Comments

          Comment on this article

          Related Documents Log