26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum cystatin C to creatinine ratio is associated with sarcopenia in non-dialysis-dependent chronic kidney disease

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sarcopenia is a prevalent complication in patients with chronic kidney disease and is associated with poor quality of life, morbidity, and mortality. Several candidate biomarkers have been evaluated for this condition. This study assessed the serum cystatin C to creatinine (serum cystatin C/Cr) ratio as a potential biomarker for sarcopenia in patients with non-dialysis-dependent chronic kidney disease.

          Methods

          This study enrolled 517 outpatients. Muscle mass (lean tissue index) was measured using a bioimpedance spectroscopic device, and muscle strength (handgrip strength) was also measured. Sarcopenia was defined as a combination of low muscle strength and low muscle mass.

          Results

          Sarcopenia was observed in 25.5% of patients, and the mean serum cystatin C/Cr ratio was significantly higher in patients with sarcopenia than in those without it (1.14 ± 0.26 vs. 1.01 ± 0.27, p < 0.001). The prevalence of sarcopenia and low lean tissue index increased as the cystatin C/Cr ratio increased. The negative predictive value of the cystatin C/Cr ratio for sarcopenia or low lean tissue index was ≥80%. Multivariate analyses revealed that when the serum cystatin C/Cr ratio increased by 1, the risk of sarcopenia, low lean tissue index, and low handgrip strength increased by 4.6-, 7.2-, and 2.6-fold, respectively (p = 0.003, p < 0.001, and p = 0.048). The association was maximized in patients with an estimated glomerular filtration rate of <30 mL/min/1.73 m 2.

          Conclusion

          Calculating the serum cystatin C/Cr ratio could be helpful for detecting and managing sarcopenia in patients with chronic kidney disease.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          A new equation to estimate glomerular filtration rate.

          Equations to estimate glomerular filtration rate (GFR) are routinely used to assess kidney function. Current equations have limited precision and systematically underestimate measured GFR at higher values. To develop a new estimating equation for GFR: the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Cross-sectional analysis with separate pooled data sets for equation development and validation and a representative sample of the U.S. population for prevalence estimates. Research studies and clinical populations ("studies") with measured GFR and NHANES (National Health and Nutrition Examination Survey), 1999 to 2006. 8254 participants in 10 studies (equation development data set) and 3896 participants in 16 studies (validation data set). Prevalence estimates were based on 16,032 participants in NHANES. GFR, measured as the clearance of exogenous filtration markers (iothalamate in the development data set; iothalamate and other markers in the validation data set), and linear regression to estimate the logarithm of measured GFR from standardized creatinine levels, sex, race, and age. In the validation data set, the CKD-EPI equation performed better than the Modification of Diet in Renal Disease Study equation, especially at higher GFR (P < 0.001 for all subsequent comparisons), with less bias (median difference between measured and estimated GFR, 2.5 vs. 5.5 mL/min per 1.73 m(2)), improved precision (interquartile range [IQR] of the differences, 16.6 vs. 18.3 mL/min per 1.73 m(2)), and greater accuracy (percentage of estimated GFR within 30% of measured GFR, 84.1% vs. 80.6%). In NHANES, the median estimated GFR was 94.5 mL/min per 1.73 m(2) (IQR, 79.7 to 108.1) vs. 85.0 (IQR, 72.9 to 98.5) mL/min per 1.73 m(2), and the prevalence of chronic kidney disease was 11.5% (95% CI, 10.6% to 12.4%) versus 13.1% (CI, 12.1% to 14.0%). The sample contained a limited number of elderly people and racial and ethnic minorities with measured GFR. The CKD-EPI creatinine equation is more accurate than the Modification of Diet in Renal Disease Study equation and could replace it for routine clinical use. National Institute of Diabetes and Digestive and Kidney Diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment

            Clinical and research interest in sarcopenia has burgeoned internationally, Asia included. The Asian Working Group for Sarcopenia (AWGS) 2014 consensus defined sarcopenia as "age-related loss of muscle mass, plus low muscle strength, and/or low physical performance" and specified cutoffs for each diagnostic component; research in Asia consequently flourished, prompting this update. AWGS 2019 retains the previous definition of sarcopenia but revises the diagnostic algorithm, protocols, and some criteria: low muscle strength is defined as handgrip strength <28 kg for men and <18 kg for women; criteria for low physical performance are 6-m walk <1.0 m/s, Short Physical Performance Battery score ≤9, or 5-time chair stand test ≥12 seconds. AWGS 2019 retains the original cutoffs for height-adjusted muscle mass: dual-energy X-ray absorptiometry, <7.0 kg/m2 in men and <5.4 kg/m2 in women; and bioimpedance, <7.0 kg/m2 in men and <5.7 kg/m2 in women. In addition, the AWGS 2019 update proposes separate algorithms for community vs hospital settings, which both begin by screening either calf circumference (<34 cm in men, <33 cm in women), SARC-F (≥4), or SARC-CalF (≥11), to facilitate earlier identification of people at risk for sarcopenia. Although skeletal muscle strength and mass are both still considered fundamental to a definitive clinical diagnosis, AWGS 2019 also introduces "possible sarcopenia," defined by either low muscle strength or low physical performance only, specifically for use in primary health care or community-based health promotion, to enable earlier lifestyle interventions. Although defining sarcopenia by body mass index-adjusted muscle mass instead of height-adjusted muscle mass may predict adverse outcomes better, more evidence is needed before changing current recommendations. Lifestyle interventions, especially exercise and nutritional supplementation, prevail as mainstays of treatment. Further research is needed to investigate potential long-term benefits of lifestyle interventions, nutritional supplements, or pharmacotherapy for sarcopenia in Asians.
              • Record: found
              • Abstract: found
              • Article: not found

              KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update

              The National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (KDOQI) has provided evidence-based guidelines for nutrition in kidney diseases since 1999. Since the publication of the first KDOQI nutrition guideline, there has been a great accumulation of new evidence regarding the management of nutritional aspects of kidney disease and sophistication in the guidelines process. The 2020 update to the KDOQI Clinical Practice Guideline for Nutrition in CKD was developed as a joint effort with the Academy of Nutrition and Dietetics (Academy). It provides comprehensive up-to-date information on the understanding and care of patients with chronic kidney disease (CKD), especially in terms of their metabolic and nutritional milieu for the practicing clinician and allied health care workers. The guideline was expanded to include not only patients with end-stage kidney disease or advanced CKD, but also patients with stages 1-5 CKD who are not receiving dialysis and patients with a functional kidney transplant. The updated guideline statements focus on 6 primary areas: nutritional assessment, medical nutrition therapy (MNT), dietary protein and energy intake, nutritional supplementation, micronutrients, and electrolytes. The guidelines primarily cover dietary management rather than all possible nutritional interventions. The evidence data and guideline statements were evaluated using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria. As applicable, each guideline statement is accompanied by rationale/background information, a detailed justification, monitoring and evaluation guidance, implementation considerations, special discussions, and recommendations for future research.

                Author and article information

                Journal
                Kidney Res Clin Pract
                Kidney Res Clin Pract
                KRCP
                Kidney Research and Clinical Practice
                The Korean Society of Nephrology
                2211-9132
                2211-9140
                September 2022
                18 May 2022
                : 41
                : 5
                : 580-590
                Affiliations
                [1 ]Division of Nephrology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
                [2 ]Hallym University Kidney Research Institute, Anyang, Republic of Korea
                [3 ]Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
                Author notes
                Correspondence: Young Rim Song Division of Nephrology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang 14068, Republic of Korea. E-mail: yrisong@ 123456hanmail.net
                Author information
                http://orcid.org/0000-0001-5108-1005
                http://orcid.org/0000-0002-7726-2143
                http://orcid.org/0000-0001-6380-9243
                http://orcid.org/0000-0002-5034-0527
                http://orcid.org/0000-0002-3379-1721
                http://orcid.org/0000-0002-0416-4745
                Article
                j-krcp-21-214
                10.23876/j.krcp.21.214
                9576455
                35791742
                ca91bb34-3381-4106-bc01-a220e425cd9c
                Copyright © 2022 The Korean Society of Nephrology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted non-commercial use, distribution of the material without any modifications, and reproduction in any medium, provided the original works properly cited.

                History
                : 25 September 2021
                : 29 March 2022
                : 6 April 2022
                Categories
                Original Article

                chronic kidney diseases,body composition,creatinine,cystatin c,sarcopenia

                Comments

                Comment on this article

                Related Documents Log