7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      1H-MRS imaging in intractable frontal lobe epilepsies characterized by depth electrode recording.

      Neuroimage
      Adolescent, Adult, Aspartic Acid, analogs & derivatives, metabolism, Brain Mapping, Choline, Creatine, Drug Resistance, Electrodes, Electroencephalography, Electrophysiology, Epilepsy, Frontal Lobe, pathology, physiopathology, Female, Frontal Lobe, Humans, Magnetic Resonance Imaging, Male, Phosphocreatine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Presurgical evaluation of frontal lobe epilepsy (FLE) remains a challenging issue and frequently requires invasive depth electrode recording. In this study, we aimed at evaluating the potential usefulness of a non-invasive technique such as proton magnetic resonance spectroscopic imaging ((1)H-MRSI) in the presurgical evaluation of FLE and at investigating the potential electrophysiological correlates of the metabolic disturbances as defined by (1)H-MRSI. We compared the distribution of (1)H-MRSI abnormalities with the electrophysiological abnormalities defined by stereo-electroencephalography (SEEG) recording in 12 patients presenting with several subtypes of FLE. We also used 12 control subjects in order to obtain normative (1)H-MRSI data. We used a multilevel (1)H-MRSI protocol to better sample the principal regions of the frontal lobe. We also applied a metabolic mapping technique allowing a visual display of metabolic data. A significant decrease of both N-acetyl-aspartate/phosphocreatine-creatine and N-acetyl-aspartate/(choline-compounds + phosphocreatine-creatine) ratios was observed in regions involved in the epileptogenic zone (EZ) and/or the irritative zone (IZ) compared to regions without electrical abnormalities in the same patients (P = 0.044 and P = 0.018, respectively), and also compared to controls (P = 0.004 and P = 0.0001, respectively). No significant differences in metabolic ratios were observed between those regions involved in the EZ and those involved in the IZ only. Our results suggest a link between the relative decrease of N-acetyl-aspartate and the EZ as well as the IZ in FLE. Thus, multilevel (1)H-MRSI protocol may add pertinent information during the non-invasive presurgical evaluation of FLE.

          Related collections

          Author and article information

          Comments

          Comment on this article