83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apoptotic cells can produce signals to instruct cells in their local environment, including ones that stimulate engulfment and proliferation. We identified a novel mode of communication by which apoptotic cells induce additional apoptosis in the same tissue. Strong induction of apoptosis in one compartment of the Drosophila wing disc causes apoptosis of cells in the other compartment, indicating that dying cells can release long-range death factors. We identified Eiger, the Drosophila tumor necrosis factor (TNF) homolog, as the signal responsible for apoptosis-induced apoptosis (AiA). Eiger is produced in apoptotic cells and, through activation of the c-Jun N-terminal kinase (JNK) pathway, is able to propagate the initial apoptotic stimulus. We also show that during coordinated cell death of hair follicle cells in mice, TNF-α is expressed in apoptotic cells and is required for normal cell death. AiA provides a mechanism to explain cohort behavior of dying cells that is seen both in normal development and under pathological conditions.

          DOI: http://dx.doi.org/10.7554/eLife.01004.001

          eLife digest

          The tissues of developing organisms can be shaped by apoptosis, a form of regulated cell killing. Although this process can occur in individual cells, apoptotic signals may also dictate the ‘communal death’ of many cells simultaneously. This occurs frequently in animal development: in human fetuses, for example, cells in the hand are directed to die to remove webbing between the fingers.

          Apoptosis has been thought to resemble a form of silent suicide by cells, but more recent work suggests that apoptotic cells can also transmit signals. Now, Pérez-Garijo et al. find that these cells can stimulate other cells to die in both fruit flies and mice.

          In fruit flies, apoptosis is activated by proteins known as Grim, Hid and Reaper. To explore whether apoptotic cells could communicate with other cells, Pérez-Garijo et al. created ‘undead’ cells in which one of these proteins was turned on, but other downstream proteins (that are responsible for the cellular execution phase of apoptosis) had been turned off: these cells were undergoing apoptosis, but could not complete the process and die.

          Strikingly, undead cells in the posterior (back) region of the wing imaginal disc—the tissue in the larva that gives rise to the wing in the adult fruit fly—could trigger apoptosis in cells in the anterior (front) half. Pérez-Garijo et al. found that the JNK pathway activated apoptosis in anterior cells. In fruit flies, the Eiger protein turns on this pathway; when Eiger was absent from posterior cells in the wing imaginal disc, apoptosis in anterior cells ceased, indicating that Eiger might signal at long range.

          Eiger is related to a protein called TNF that has been implicated in cycles of destruction and renewal of hair follicles in mice. Pérez-Garijo et al. found that TNF is produced by apoptotic cells in hair follicles, and that blocking TNF inhibits the death of other cells in the same cohort: this suggests that a common mechanism could regulate the communal death of cells in flies and mammals. These studies therefore shed light on a conserved pathway in the modulation of tissue development.

          DOI: http://dx.doi.org/10.7554/eLife.01004.002

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of wound healing by growth factors and cytokines.

          Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Programmed cell death in animal development.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis.

              We describe a new repressible binary expression system based on the regulatory genes from the Neurospora qa gene cluster. This "Q system" offers attractive features for transgene expression in Drosophila and mammalian cells: low basal expression in the absence of the transcriptional activator QF, high QF-induced expression, and QF repression by its repressor QS. Additionally, feeding flies quinic acid can relieve QS repression. The Q system offers many applications, including (1) intersectional "logic gates" with the GAL4 system for manipulating transgene expression patterns, (2) GAL4-independent MARCM analysis, and (3) coupled MARCM analysis to independently visualize and genetically manipulate siblings from any cell division. We demonstrate the utility of the Q system in determining cell division patterns of a neuronal lineage and gene function in cell growth and proliferation, and in dissecting neurons responsible for olfactory attraction. The Q system can be expanded to other uses in Drosophila and to any organism conducive to transgenesis. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                24 September 2013
                2013
                : 2
                : e01004
                Affiliations
                [1 ]Strang Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University , New York, United States
                New York University School of Medicine , United States
                New York University School of Medicine , United States
                Author notes
                [* ]For correspondence: steller@ 123456rockefeller.edu
                Article
                01004
                10.7554/eLife.01004
                3779319
                24066226
                ca95cdfc-002e-4621-ac7e-117904863465
                Copyright © 2013, Pérez-Garijo et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 26 May 2013
                : 06 August 2013
                Funding
                Funded by: Howard Hughes Medical Institute
                Award Recipient :
                Funded by: National Institutes of Health
                Award ID: R01-AR050452
                Award Recipient :
                Funded by: Fundacion Ramon Areces
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Developmental Biology and Stem Cells
                Custom metadata
                0.7
                A common mechanism might regulate the communal death of cells in flies and mammals.

                Life sciences
                apoptosis,tnf,signaling by apoptotic cells,jnk pathway,hair follicle cycle,cell death,d. melanogaster,mouse

                Comments

                Comment on this article