38
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contribution of Embodiment to Solving the Riddle of Infantile Amnesia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA)—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA), faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of studies using animal models have converged on the hypothesis that maturation of the hippocampus is an important factor. But why does the hippocampus mature at one time and not another, and how does that maturation relate to memory? Our hypothesis is rooted in theories of embodied cognition, and it provides an explanation both for hippocampal development and the end of IA. Specifically, the onset of locomotion prompts the alignment of hippocampal place cells and grid cells to the environment, which in turn facilitates the ontogeny of long-term episodic memory and the end of IA. That is, because the animal can now reliably discriminate locations, location becomes a stable cue for memories. Furthermore, as the mode of human locomotion shifts from crawling to walking, there is an additional shift in the alignment of the hippocampus that marks the beginning of adult-like episodic memory and the end of CA. Finally, given a reduction in self-locomotion and exploration with aging, the hypothesis suggests a partial explanation for cognitive decline with aging.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Travel Broadens the Mind

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exergaming and older adult cognition: a cluster randomized clinical trial.

              Dementia cases may reach 100 million by 2050. Interventions are sought to curb or prevent cognitive decline. Exercise yields cognitive benefits, but few older adults exercise. Virtual reality-enhanced exercise or "exergames" may elicit greater participation. To test the following hypotheses: (1) stationary cycling with virtual reality tours ("cybercycle") will enhance executive function and clinical status more than traditional exercise; (2) exercise effort will explain improvement; and (3) brain-derived neurotrophic growth factor (BDNF) will increase. Multi-site cluster randomized clinical trial (RCT) of the impact of 3 months of cybercycling versus traditional exercise, on cognitive function in older adults. Data were collected in 2008-2010; analyses were conducted in 2010-2011. 102 older adults from eight retirement communities enrolled; 79 were randomized and 63 completed. A recumbent stationary ergometer was utilized; virtual reality tours and competitors were enabled on the cybercycle. Executive function (Color Trails Difference, Stroop C, Digits Backward); clinical status (mild cognitive impairment; MCI); exercise effort/fitness; and plasma BDNF. Intent-to-treat analyses, controlling for age, education, and cluster randomization, revealed a significant group X time interaction for composite executive function (p=0.002). Cybercycling yielded a medium effect over traditional exercise (d=0.50). Cybercyclists had a 23% relative risk reduction in clinical progression to MCI. Exercise effort and fitness were comparable, suggesting another underlying mechanism. A significant group X time interaction for BDNF (p=0.05) indicated enhanced neuroplasticity among cybercyclists. Cybercycling older adults achieved better cognitive function than traditional exercisers, for the same effort, suggesting that simultaneous cognitive and physical exercise has greater potential for preventing cognitive decline. This study is registered at Clinicaltrials.gov NCT01167400. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                25 January 2016
                2016
                : 7
                Affiliations
                [1] 1Department of Psychology, Arizona State University, Tempe AZ, USA
                [2] 2Department of Psychology, University of Wisconsin-Madison, Madison WI, USA
                [3] 3Simpson College, Indianola IA, USA
                Author notes

                Edited by: Anna M. Borghi, University of Bologna and Institute of Cognitive Sciences and Technologies, Italy

                Reviewed by: Sascha Topolinski, University of Cologne, Germany; Malte Schilling, International Computer Science Institute, USA

                *Correspondence: Arthur M. Glenberg, glenberg@ 123456asu.edu

                This article was submitted to Cognition, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2016.00010
                4724724
                26834683
                caacd1f5-9185-41e6-97cf-60445db5e152
                Copyright © 2016 Glenberg and Hayes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 29, Pages: 6, Words: 0
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: 1324807
                Award ID: 1020367
                Categories
                Psychology
                Hypothesis and Theory

                Comments

                Comment on this article