21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Automated identification of functional dynamic networks from X-ray crystallography

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Biomolecular simulation: a computational microscope for molecular biology.

          Molecular dynamics simulations capture the behavior of biological macromolecules in full atomic detail, but their computational demands, combined with the challenge of appropriately modeling the relevant physics, have historically restricted their length and accuracy. Dramatic recent improvements in achievable simulation speed and the underlying physical models have enabled atomic-level simulations on timescales as long as milliseconds that capture key biochemical processes such as protein folding, drug binding, membrane transport, and the conformational changes critical to protein function. Such simulation may serve as a computational microscope, revealing biomolecular mechanisms at spatial and temporal scales that are difficult to observe experimentally. We describe the rapidly evolving state of the art for atomic-level biomolecular simulation, illustrate the types of biological discoveries that can now be made through simulation, and discuss challenges motivating continued innovation in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein sectors: evolutionary units of three-dimensional structure.

            Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term "protein sectors." Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic dynamics of an enzyme underlies catalysis.

              A unique feature of chemical catalysis mediated by enzymes is that the catalytically reactive atoms are embedded within a folded protein. Although current understanding of enzyme function has been focused on the chemical reactions and static three-dimensional structures, the dynamic nature of proteins has been proposed to have a function in catalysis. The concept of conformational substates has been described; however, the challenge is to unravel the intimate linkage between protein flexibility and enzymatic function. Here we show that the intrinsic plasticity of the protein is a key characteristic of catalysis. The dynamics of the prolyl cis-trans isomerase cyclophilin A (CypA) in its substrate-free state and during catalysis were characterized with NMR relaxation experiments. The characteristic enzyme motions detected during catalysis are already present in the free enzyme with frequencies corresponding to the catalytic turnover rates. This correlation suggests that the protein motions necessary for catalysis are an intrinsic property of the enzyme and may even limit the overall turnover rate. Motion is localized not only to the active site but also to a wider dynamic network. Whereas coupled networks in proteins have been proposed previously, we experimentally measured the collective nature of motions with the use of mutant forms of CypA. We propose that the pre-existence of collective dynamics in enzymes before catalysis is a common feature of biocatalysts and that proteins have evolved under synergistic pressure between structure and dynamics.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                14 August 2013
                04 August 2013
                September 2013
                04 February 2014
                : 10
                : 9
                : 896-902
                Affiliations
                [1 ]Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford, CA, USA
                [2 ]Deptartment of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
                [3 ]Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
                [4 ]Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
                [5 ]Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
                Author notes
                Article
                NIHMS505096
                10.1038/nmeth.2592
                3760795
                23913260
                cab4a2ba-7e63-4284-9611-b1fbd16e6347

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: U54 GM094586 || GM
                Funded by: Office of the Director : NIH
                Award ID: DP5 OD009180 || OD
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article