2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past years, biomaterials-based nano cues with multi-functional characteristics have been engineered with high interest. The ease in fine tunability with maintained compliance makes an array of nano-bio materials supreme candidates for the biomedical sector of the modern world. Moreover, the multi-functional dimensions of nano-bio elements also help to maintain or even improve the patients’ life quality most securely by lowering or diminishing the adverse effects of in practice therapeutic modalities. Therefore, engineering highly efficient, reliable, compatible, and recyclable biomaterials-based novel corrective cues with multipurpose applications is essential and a core demand to tackle many human health-related challenges, e.g., the current COVID-19 pandemic. Moreover, robust engineering design and properly exploited nano-bio materials deliver wide-ranging openings for experimentation in the field of interdisciplinary and multidisciplinary scientific research. In this context, herein, it is reviewed the applications and potential on tissue engineering and therapeutics of COVID-19 of several biomaterials. Following a brief introduction is a discussion of the drug delivery routes and mechanisms of biomaterials-based nano cues with suitable examples. The second half of the review focuses on the mainstream applications changing the dynamics of 21st century materials. In the end, current challenges and recommendations are given for a healthy and foreseeable future.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

          SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Nanoparticles: Properties, applications and toxicities

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunology of COVID-19: current state of the science

              The coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                14 May 2021
                2021
                14 May 2021
                : 9
                : 597958
                Affiliations
                Tecnologico de Monterrey, School of Engineering and Sciences , Monterrey, Mexico
                Author notes

                Edited by: Silvia Minardi, Northwestern University, United States

                Reviewed by: Joseph S. Fernandez-Moure, Duke University, United States; Charlotte Chen, Northwestern University, United States

                *Correspondence: Roberto Parra-Saldívar, r.parra@ 123456tec.mx
                Juan Eduardo Sosa-Hernández, eduardo.sosa@ 123456tec.mx

                This article was submitted to Nanobiotechnology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2021.597958
                8160436
                34055754
                cab81be4-eeac-4e8e-ae23-db57e6a783f5
                Copyright © 2021 Melchor-Martínez, Torres Castillo, Macias-Garbett, Lucero-Saucedo, Parra-Saldívar and Sosa-Hernández.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 August 2020
                : 21 April 2021
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 172, Pages: 16, Words: 0
                Categories
                Bioengineering and Biotechnology
                Review

                tissue engineering,covid-19 therapy,biomaterials,multifunctional entities,drug delivery system,fabrication strategies,biomedical applications

                Comments

                Comment on this article