20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How would GW150914 look with future GW detector networks?

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The first detected gravitational wave signal, GW150914, was produced by the coalescence of a stellar-mass binary black hole. Along with the subsequent detection of GW151226 and the candidate event LVT151012, this gives us evidence for a population of black hole binaries with component masses in the tens of solar masses. As detector sensitivity improves, this type of source is expected to make a large contribution to the overall number of detections, but this type of source has received little attention compared to binary neutron star systems in studies of projected network performance. We simulate the observation of a system like GW150914 with different proposed network configurations, and study the precision of parameter estimates, particularly source location, orientation and masses. We find that the expected low frequency improvements to sensitivity improve precision of chirp mass estimates by an order of magnitude, whereas the improvements in sky location and orientation are driven by the expanded network configuration. This demonstrates that both sensitivity and number of detectors will be important factors in the scientific potential of second generation detector networks.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of \(1.0 \times 10^{-21}\). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of \(410^{+160}_{-180}\) Mpc corresponding to a redshift \(z = 0.09^{+0.03}_{-0.04}\). In the source frame, the initial black hole masses are \(36^{+5}_{-4} M_\odot\) and \(29^{+4}_{-4} M_\odot\), and the final black hole mass is \(62^{+4}_{-4} M_\odot\), with \(3.0^{+0.5}_{-0.5} M_\odot c^2\) radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?

            The most promising source of gravitational waves for the planned detectors LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star (NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH) binaries. We investigate how accurately the distance to the source and the masses and spins of the two bodies will be measured from the gravitational wave signals by the three detector LIGO/VIRGO network using ``advanced detectors'' (those present a few years after initial operation). The combination \({\cal M} \equiv (M_1 M_2)^{3/5}(M_1 +M_2)^{-1/5}\) of the masses of the two bodies is measurable with an accuracy \(\approx 0.1\%-1\%\). The reduced mass is measurable to \(\sim 10\%-15\%\) for NS/NS and NS/BH binaries, and \(\sim 50\%\) for BH/BH binaries (assuming \(10M_\odot\) BH's). Measurements of the masses and spins are strongly correlated; there is a combination of \(\mu\) and the spin angular momenta that is measured to within \(\sim 1\%\). We also estimate that distance measurement accuracies will be \(\le 15\%\) for \(\sim 8\%\) of the detected signals, and \(\le 30\%\) for \(\sim 60\%\) of the signals, for the LIGO/VIRGO 3-detector network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interferometer design of the KAGRA gravitational wave detector

              KAGRA is a cryogenic interferometric gravitational wave detector being constructed at the underground site of Kamioka mine in Gifu prefecture, Japan. We performed an optimization of the interferomter design, to achieve the best sensitivity and a stable operation, with boundary conditions of classical noises and under various practical constraints, such as the size of the tunnel or the mirror cooling capacity. Length and alignment sensing schemes for the robust control of the interferometer are developed. In this paper, we describe the detailed design of the KAGRA interferometer as well as the reasoning behind design choices.
                Bookmark

                Author and article information

                Journal
                2017-03-27
                Article
                1703.08988
                cabba5ed-78f0-470e-910e-aef762e8b66e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                LIGO-P1700020
                17 pages, 6 figures, 2 tables
                astro-ph.IM astro-ph.HE gr-qc

                General relativity & Quantum cosmology,Instrumentation & Methods for astrophysics,High energy astrophysical phenomena

                Comments

                Comment on this article