20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated Plasma Neutrophil Gelatinase-Associated Lipocalin Level as a Risk Factor for Anemia in Patients with Systemic Inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies on neutrophil gelatinase-associated lipocalin (NGAL) as an iron-regulatory protein are limited. This study investigated the relationships between plasma NGAL levels and indices of anemia in 187 patients with systemic inflammation. Plasma NGAL levels were significantly higher in patients with anemia versus in patients without anemia (185 ng/mL versus 98 ng/mL; P < 0.001). Serum iron levels were lower in patients with NGAL > 156 ng/mL than in those with NGAL ≤ 156 ng/mL (27.4 ± 25.3  µg/dL versus 58.1 ± 43.5  µg/dL; P < 0.001). In a receiver operating characteristic curve, the diagnostic ability of NGAL to identify anemia was superior to that of high-sensitivity C-reactive protein [0.712 (95% CI, 0.618–0.787) versus 0.649 (95% CI, 0.573–0.744); P < 0.01]. In a multivariate logistic regression analysis, the elevated NGAL level was significantly associated with the presence of anemia after adjusting for potential confounders [odds ratio, 1.30 (95% CI, 1.07–2.58); P = 0.010]. In conclusion, enhanced NGAL production may contribute to the development of anemia in patients with systemic inflammation.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.

          Although iron is required to sustain life, its free concentration and metabolism have to be tightly regulated. This is achieved through a variety of iron-binding proteins including transferrin and ferritin. During infection, bacteria acquire much of their iron from the host by synthesizing siderophores that scavenge iron and transport it into the pathogen. We recently demonstrated that enterochelin, a bacterial catecholate siderophore, binds to the host protein lipocalin 2 (ref. 5). Here, we show that this event is pivotal in the innate immune response to bacterial infection. Upon encountering invading bacteria the Toll-like receptors on immune cells stimulate the transcription, translation and secretion of lipocalin 2; secreted lipocalin 2 then limits bacterial growth by sequestrating the iron-laden siderophore. Our finding represents a new component of the innate immune system and the acute phase response to infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.

            First identified as a neutrophil granule component, neutrophil gelatinase-associated lipocalin (NGAL; also called human neutrophil lipocalin, 24p3, uterocalin, or neu-related lipocalin) is a member of the lipocalin family of binding proteins. Putative NGAL ligands, including neutrophil chemotactic agents such as N-formylated tripeptides, have all been refuted by recent biochemical and structural results. NGAL has subsequently been implicated in diverse cellular processes, but without a characterized ligand, the molecular basis of these functions remained mysterious. Here we report that NGAL tightly binds bacterial catecholate-type ferric siderophores through a cyclically permuted, hybrid electrostatic/cation-pi interaction and is a potent bacteriostatic agent in iron-limiting conditions. We therefore propose that NGAL participates in the antibacterial iron depletion strategy of the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase.

              A 25-kDa protein was found to be associated with purified human neutrophil gelatinase. Polyclonal antibodies raised against gelatinase not only recognized gelatinase but also this 25-kDa protein. Specific antibodies against the 25-kDa protein were obtained by affinity purification of the gelatinase antibodies. Immunoblotting and immunoprecipitation studies demonstrated the 135-kDa form of gelatinase to be a complex of 92-kDa gelatinase and the 25-kDa protein, and the 220-kDa form was demonstrated to be a homodimer of the 92-kDa protein, thus explaining the 220-, 135-, and 92-kDa forms characteristic of neutrophil gelatinase. The 25-kDa protein was purified to apparent homogeneity from exocytosed material from phorbol myristate acetate-stimulated neutrophils. The primary structure of the 25-kDa protein was determined as a 178-residue protein. It was susceptible to treatment with N-glycanase, and one N-glycosylation site was identified. The sequence did not match any known human protein, but showed a high degree of similarity with the deduced sequences of rat alpha 2-microglobulin-related protein and the mouse protein 24p3. It is thus a new member of the lipocalin family. The function of the 25-kDa protein, named neutrophil gelatinase-associated lipocalin (NGAL), remains to be determined.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                29 December 2016
                : 2016
                : 9195219
                Affiliations
                1Department of Laboratory Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
                2School of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan
                3Department of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8050, Japan
                Author notes
                *Jong Weon Choi: jwchoi@ 123456inha.ac.kr

                Academic Editor: Phillip E. Klebba

                Author information
                http://orcid.org/0000-0002-3775-6237
                Article
                10.1155/2016/9195219
                5227123
                28127551
                cabdd5a5-3f43-4d3d-a16a-c9a94be53909
                Copyright © 2016 Jong Weon Choi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 July 2016
                : 18 November 2016
                : 8 December 2016
                Funding
                Funded by: Inha University
                Categories
                Research Article

                Comments

                Comment on this article