12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tundra Type Drives Distinct Trajectories of Functional and Taxonomic Composition of Arctic Fungal Communities in Response to Climate Change – Results From Long-Term Experimental Summer Warming and Increased Snow Depth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The arctic tundra is undergoing climate-driven changes and there are serious concerns related to the future of arctic biodiversity and altered ecological processes under possible climate change scenarios. Arctic land surface temperatures and precipitation are predicted to increase further, likely causing major transformation in terrestrial ecosystems. As a response to increasing temperatures, shifts in vegetation and soil fungal communities have already been observed. Little is known, however, how long-term experimental warming coupled with increased snow depth influence the trajectories of soil fungal communities in different tundra types. We compared edaphic variables and fungal community composition in experimental plots simulating the expected increase in summer warming and winter snow depth, based on DNA metabarcoding data. Fungal communities in the sampled dry and moist acidic tundra communities differed greatly, with tundra type explaining ca. one-third of compositional variation. Furthermore, dry and moist tundra appear to have different trajectories in response to climate change. Specifically, while both warming and increased snow depth had significant effects on fungal community composition and edaphic variables in dry tundra, the effect of increased snow was greater. However, in moist tundra, fungal communities mainly were affected by summer warming, while increased snow depth had a smaller effect and only on some functional groups. In dry tundra, microorganisms generally are limited by moisture in the summer and extremely low temperatures in winter, which is in agreement with the stronger effect of increased snow depth relative to warming. On the contrary, moist tundra soils generally are saturated with water, remain cold year-round and show relatively small seasonal fluctuations in temperature. The greater observed effect of warming on fungi in moist tundra may be explained by the narrower temperature optimum compared to those in dry tundra.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Search and clustering orders of magnitude faster than BLAST.

          Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards a unified paradigm for sequence-based identification of fungi.

            The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE. © 2013 John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fungal biogeography. Global diversity and geography of soil fungi.

              Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 March 2021
                2021
                : 12
                : 628746
                Affiliations
                [1] 1MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University , Eger, Hungary
                [2] 2Naturalis Biodiversity Center , Leiden, Netherlands
                [3] 3Department of Biosciences, University of Oslo , Oslo, Norway
                Author notes

                Edited by: Pietro Buzzini, University of Perugia, Italy

                Reviewed by: Minna Männistö, Natural Resources Institute Finland (Luke), Finland; Luiz H. Rosa, Federal University of Minas Gerais, Brazil; Ursula Peintner, University of Innsbruck, Austria

                *Correspondence: József Geml, jozsef.geml@ 123456gmail.com

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.628746
                7994276
                cabf7895-6a33-4e55-98e6-832de5676efc
                Copyright © 2021 Geml, Morgado and Semenova-Nelsen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 November 2020
                : 18 February 2021
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 58, Pages: 13, Words: 7863
                Funding
                Funded by: NWO-ALW Open Program
                Award ID: 821.01.016
                Funded by: Hungarian Academy of Sciences 10.13039/501100003825
                Award ID: 96049
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                climate change,fungal ecology,international tundra experiment,metabarcoding,tundra

                Comments

                Comment on this article