Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      TRPV1-Mediated Diuresis and Natriuresis Induced by Hypertonic Saline Perfusion of the Renal Pelvis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The transient receptor potential vanilloid type 1 (TRPV1) channel is known to be activated by multiple stimuli, albeit its role in mediating renal function is largely unknown. This study was designed to test the hypothesis that TRPV1 mediates diuresis and natriuresis induced by hypertonic saline perfusion into the pelvis. Methods: NaCl or KCl was perfused into the left renal pelvis of rats at a rate without changing renal pelvic pressure. Afferent renal nerve activity (ARNA), urine flow rate (V) and urinary sodium excretion (UNaV) in the presence or absence of selective antagonists of TRPV1, capsazepine (CAPZ), or neurokinin-1 (NK1) receptors, RP67580, were examined. Results: Unilateral renal pelvis perfusion of NaCl at 600 m M, but not 150 or 300 m M, increased ipsilateral ARNA and contralateral V and UNaV, which were blocked by ipsilateral administration of CAPZ or RP67580. In contrast, KCl perfused at 150 or 300 m M, but not 600 m M, increased ipsilateral ARNA and contralateral V and UNaV, which were insensitive to CAPZ. Conclusion: Unilateral hypertonic saline perfusion causes contralateral diuresis and natriuresis via TRPV1 or NK1 activation, indicating that these receptors may play a critical role in sensing microenvironmental changes in the renal pelvis to modulate renal function in health and disease.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity.

          Ca2+-permeable channels that are involved in the responses of mammalian cells to changes in extracellular osmolarity have not been characterized at the molecular level. Here we identify a new TRP (transient receptor potential)-like channel protein, OTRPC4, that is expressed at high levels in the kidney, liver and heart. OTRPC4 forms Ca2+-permeable, nonselective cation channels that exhibit spontaneous activity in isotonic media and are rapidly activated by decreases in, and are inhibited by increases in, extracellular osmolarity. Changes in osmolarity of as little as 10% result in significant changes in intracellular Ca2+ concentration. We propose that OTRPC4 is a candidate for a molecular sensor that confers osmosensitivity on mammalian cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRP channels: an overview.

              The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2007
                September 2007
                24 August 2007
                : 27
                : 5
                : 530-537
                Affiliations
                Department of Medicine, the Neuroscience Program, and the Cell and Molecular Biology Program, Michigan State University, East Lansing, Mich., USA
                Article
                107665 Am J Nephrol 2007;27:530–537
                10.1159/000107665
                17717412
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, References: 29, Pages: 8
                Categories
                Original Report: Patient-Oriented, Translational Research

                Comments

                Comment on this article