10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemotherapeutic drug targeting to lungs by way of microspheres after intravenous administration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Currently, microsphere technology plays a major role in the development of many new cancer therapies. In the current study, we proposed a targeted drug-delivery system to improve the treatment efficacy of one of the common conventional chemotherapeutic drugs used to treat lung tumors, 5-fluorouracil (5-FU).

          Materials and methods

          Following the preparation and optimization of small, solid micro-spheres, ranging in diameter between 5 and 15 µm, the final product 5-fluorouracil gelatin (5-FUG) was formulated using a Buchi Nano Spray Dryer by varying the drug:polymer ratio.

          Results

          Particle yield was calculated as 65% ± 1.2%, and the drug content in the formulation was recorded as 74% ± 1.6%. Particle surface morphology was examined as shriveled shape (crumpled/folded); particle size distribution displayed a binomial distribution, with a mean diameter of 9.6 µm. In vitro drug release studies revealed that ~36.4% of the 5-FU in 5-FUG was released in the first hour after injection. Clinically, this would lead to initial or burst release, facilitating a quick rise to therapeutic levels. In contrast to the pure 5-FU drug (89.2% of the drug released in the first 30 minutes), 99.1% of the drug in 5-FUG was released from the spray-dried particles for a period of 12 hours. A two-compartment model was used to generate plasma concentration–time curves. 5-FUG injection has a much different distribution in vivo in contrast to intravenous injection of 5-FU. In addition, the half-life after intravenous injection of 5-FUG, t 1/2( α) = 1.23 hours and t 1/2( β) = 18.3 hours, was considerably longer than that of 5-FU, t 1/2( α) = 0.34 hours and t 1/2( β) = 8.62 hours. Examination of stained lung tissue sections showed no histopathological tissue changes or evidence of gross pathology. In addition, the optimized formulation demonstrated an increased stability under both long-term and refrigerated storage conditions.

          Conclusion

          Our goal was to develop similar delivery systems for other chemotherapeutic drugs that are site specific to different disease models/tumor types.

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle-based targeted drug delivery.

          Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies

            Cancer continues to be a prevalent and lethal disease, despite advances in tumor biology research and chemotherapy development. Major obstacles in cancer treatment arise from tumor heterogeneity, drug resistance, and systemic toxicities. Nanoscale delivery systems, or nanotherapies, are increasing in importance as vehicles for antineoplastic agents because of their potential for targeting and multifunctionality. We discuss the current field of cancer therapy and potential strategies for addressing obstacles in cancer treatment with nanotherapies. Specifically, we review the strategies for rationally designing nanoparticles for targeted, multimodal delivery of therapeutic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic solvents in the pharmaceutical industry.

              Organic solvents are commonly used in the pharmaceutical industry as reaction media, in separation and purification of synthesis products and also for cleaning of equipment. This paper presents some aspects of organic solvents utilization in an active pharmaceutical ingredient and a drug product manufacturing process. As residual solvents are not desirable substances in a final product, different methods for their removal may be used, provided they fulfill safety criteria. After the drying process, analyses need to be performed to check if amounts of solvents used at any step of the production do not exceed acceptable limits (taken from ICH Guideline or from pharmacopoeias). Also new solvents like supercritical fluids or ionic liquids are developed to replace "traditional" organic solvents in the pharmaceutical production processes.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                18 September 2018
                : 12
                : 3051-3060
                Affiliations
                [1 ]Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia, sibghatullah.sangi@ 123456nbu.edu.sa
                [2 ]Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
                [3 ]Department of Biological Sciences, College of Science, Northern Border University, Arar, Saudi Arabia
                [4 ]Higher Institute of Health and Bio-products of Angers (ISSBA), Angers-France, Université d’Angers, Angers, France
                Author notes
                Correspondence: Sibghatullah Sangi, Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha Campus, PO Box 840, 91411 Rafha, Saudi Arabia, Tel +966 55 6356 7585, Email sibghatullah.sangi@ 123456nbu.edu.sa
                Article
                dddt-12-3051
                10.2147/DDDT.S173485
                6151103
                cac0ce7f-0ebd-4795-93b6-07d87f961a84
                © 2018 Sangi et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                spray drying,5-fluorouracil,cancer,microspheres,targeting
                Pharmacology & Pharmaceutical medicine
                spray drying, 5-fluorouracil, cancer, microspheres, targeting

                Comments

                Comment on this article