21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ADP-ribosylation factor–like 4C binding to filamin-A modulates filopodium formation and cell migration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Filamin-A plays a key role in tumorigenesis as well as the metastatic progression of prostate cancer, ovarian cancer, and gastric carcinoma. In this study, we identified filamin-A as a novel effector of Arl4C and showed that binding between Arl4C and FLNa modulates the formation of filopodia and cell migration by promoting activation of Cdc42.

          Abstract

          Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor–like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa–mediated activation of Cdc42.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Small GTP-binding proteins.

          Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Filamins as integrators of cell mechanics and signalling.

            Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of fascin in filopodial protrusion

              In this study, the mechanisms of actin-bundling in filopodia were examined. Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma B16F1 cells revealed that fascin was specifically localized along the entire length of all filopodia, whereas other actin cross-linkers were not. RNA interference of fascin reduced the number of filopodia, and remaining filopodia had abnormal morphology with wavy and loosely bundled actin organization. Dephosphorylation of serine 39 likely determined cellular filopodia frequency. The constitutively active fascin mutant S39A increased the number and length of filopodia, whereas the inactive fascin mutant S39E reduced filopodia frequency. Fluorescence recovery after photobleaching of GFP-tagged wild-type and S39A fascin showed that dephosphorylated fascin underwent rapid cycles of association to and dissociation from actin filaments in filopodia, with t 1/2 < 10 s. We propose that fascin is a key specific actin cross-linker, providing stiffness for filopodial bundles, and that its dynamic behavior allows for efficient coordination between elongation and bundling of filopodial actin filaments.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 November 2017
                : 28
                : 22
                : 3013-3028
                Affiliations
                [1] aInstitute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
                [2] bDepartment of Medical Research, National Taiwan University Hospital, 100 Taipei, Taiwan
                CEA Grenoble
                Author notes

                The authors declare no competing financial interests.

                *Address correspondence to: Fang-Jen S. Lee ( fangjen@ 123456ntu.edu.tw )
                Article
                E17-01-0059
                10.1091/mbc.E17-01-0059
                5662259
                28855378
                cac3c1d0-9765-49f0-be6c-df0f93d87d4d
                © 2017 Chiang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 23 January 2017
                : 17 August 2017
                : 25 August 2017
                Categories
                Articles
                Cell Motility

                Molecular biology
                Molecular biology

                Comments

                Comment on this article