18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension.

      American Journal of Hypertension
      Adult, Age Factors, Biological Markers, blood, Blood Pressure, Cross-Over Studies, Dietary Fats, Unsaturated, administration & dosage, Double-Blind Method, Endothelium, Vascular, metabolism, physiopathology, Female, Forearm, blood supply, Humans, Hyperemia, Hypertension, diagnosis, diet therapy, Inflammation Mediators, Oxidative Stress, Plant Oils, Polyphenols, Severity of Illness Index, Sex Factors, Spain, Time Factors, Treatment Outcome, Young Adult

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olive oil polyphenols have been associated with several cardiovascular health benefits. This study aims to examine the influence of a polyphenol-rich olive oil on blood pressure (BP) and endothelial function in 24 young women with high-normal BP or stage 1 essential hypertension. We conducted a double-blind, randomized, crossover dietary-intervention study. After a run-in period of 4 months (baseline values), two diets were used, one with polyphenol-rich olive oil (∼30 mg/day), the other with polyphenol-free olive oil. Each dietary period lasted 2 months with a 4-week washout between diets. Systolic and diastolic BP, serum or plasma biomarkers of endothelial function, oxidative stress, and inflammation, and ischemia-induced hyperemia in the forearm were measured. When compared to baseline values, only the polyphenol-rich olive oil diet led to a significant (P < 0.01) decrease of 7.91 mm Hg in systolic and 6.65 mm Hg of diastolic BP. A similar finding was found for serum asymmetric dimethylarginine (ADMA) (-0.09 ± 0.01 µmol/l, P < 0.01), oxidized low-density lipoprotein (ox-LDL) (-28.2 ± 28.5 µg/l, P < 0.01), and plasma C-reactive protein (CRP) (-1.9 ± 1.3 mg/l, P < 0.001). The polyphenol-rich olive oil diet also elicited an increase in plasma nitrites/nitrates (+4.7 ± 6.6 µmol/l, P < 0.001) and hyperemic area after ischemia (+345 ± 386 perfusion units (PU)/sec, P < 0.001). We concluded that the consumption of a diet containing polyphenol-rich olive oil can decrease BP and improve endothelial function in young women with high-normal BP or stage 1 essential hypertension.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study.

          To determine whether flavonoid intake explains differences in mortality rates from chronic diseases between populations. Cross-cultural correlation study. Sixteen cohorts of the Seven Countries Study in whom flavonoid intake at baseline around 1960 was estimated by flavonoid analysis of equivalent food composites that represented the average diet in the cohorts. Mortality from coronary heart disease, cancer (various sites), and all causes in the 16 cohorts after 25 years of follow-up. Average intake of antioxidant flavonoids was inversely associated with mortality from coronary heart disease and explained about 25% of the variance in coronary heart disease rates in the 16 cohorts. In multivariate analysis, intake of saturated fat (73%; P = 0.0001), flavonoid intake (8%, P = .01), and percentage of smokers per cohort (9%; P = .03) explained together, independent of intake of alcohol and antioxidant vitamins, 90% of the variance in coronary heart disease rates. Flavonoid intake was not independently associated with mortality from other causes. Average flavonoid intake may partly contribute to differences in coronary heart disease mortality across populations, but it does not seem to be an important determinant of cancer mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers.

            Although numerous human studies have shown consistent effects of some polyphenol-rich foods on several intermediate markers for cardiovascular diseases, it is still unknown whether their action could be specifically related to polyphenols. We investigated the effect of orange juice and its major flavonoid, hesperidin, on microvascular reactivity, blood pressure, and cardiovascular risk biomarkers through both postprandial and chronic intervention studies. Twenty-four healthy, overweight men (age 50-65 y) were included in a randomized, controlled, crossover study. Throughout the three 4-wk periods, volunteers daily consumed 500 mL orange juice, 500 mL control drink plus hesperidin (CDH), or 500 mL control drink plus placebo (CDP). All measurements and blood collections were performed in overnight-fasted subjects before and after the 4-wk treatment periods. The postprandial study was conducted at the beginning of each experimental period. Diastolic blood pressure (DBP) was significantly lower after 4 wk consumption of orange juice or CDH than after consumption of CDP (P = 0.02), whereas microvascular endothelium-related reactivity was not significantly affected when measured after an overnight fast. However, both orange juice and CDH ingestion significantly improved postprandial microvascular endothelial reactivity compared with CDP (P < 0.05) when measured at the peak of plasma hesperetin concentration. In healthy, middle-aged, moderately overweight men, orange juice decreases DBP when regularly consumed and postprandially increases endothelium-dependent microvascular reactivity. Our study suggests that hesperidin could be causally linked to the beneficial effect of orange juice. This trial is registered at clinicaltrials.gov as NCT00983086.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of oxidative stress in the pathophysiology of hypertension.

              Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.
                Bookmark

                Author and article information

                Comments

                Comment on this article