Blog
About

2
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          The major facilitator superfamily (MFS) revisited.

          The major facilitator superfamily (MFS) is the largest known superfamily of secondary carriers found in the biosphere. It is ubiquitously distributed throughout virtually all currently recognized organismal phyla. This superfamily currently (2012) consists of 74 families, each of which is usually concerned with the transport of a certain type of substrate. Many of these families, defined phylogenetically, do not include even a single member that is functionally characterized. In this article, we probe the evolutionary origins of these transporters, providing evidence that they arose from a single 2-transmembrane segment (TMS) hairpin structure that triplicated to give a 6-TMS unit that duplicated to a 12-TMS protein, the most frequent topological type of these permeases. We globally examine MFS protein topologies, focusing on exceptional proteins that deviate from the norm. Nine distantly related families appear to have members with 14 TMSs in which the extra two are usually centrally localized between the two 6-TMS repeat units. They probably have arisen by intragenic duplication of an adjacent hairpin. This alternative topology probably arose multiple times during MFS evolution. Convincing evidence for MFS permeases with fewer than 12 TMSs was not forthcoming, leading to the suggestion that all 12 TMSs are required for optimal function. Some homologs appear to have 13, 14, 15 or 16 TMSs, and the probable locations of the extra TMSs were identified. A few MFS permeases are fused to other functional domains or are fully duplicated to give 24-TMS proteins with dual functions. Finally, the MFS families with no known function were subjected to genomic context analyses leading to functional predictions. © 2012 The Authors Journal compilation © 2012 FEBS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multidrug Efflux Pumps in Staphylococcus aureus: an Update

            The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants.

              Nucleotide sequence analysis of ORF1 from the integron on the broad-host-range plasmid R751 revealed that the first 94 of 110 codons of ORF1 from R751 are identical to ORF4, an open reading frame from the 3' conserved segment of other integrons found in gram-negative bacteria, after which point they diverged completely. The predicted products of both ORF1 and ORF4 share homology with the multidrug exporter QacC. Phenotypic analysis revealed that ORF1 specifies a resistance profile to antiseptics and disinfectants almost identical to that of qacC, whereas ORF4 specifies much lower levels of resistance to these compounds. ORF4, whose product lacks the C-terminal 16 amino acids of the ORF1 protein, may have evolved by the interruption of ORF1 from the insertion of a DNA segment carrying a sulI sulfonamide resistance determinant. Hence, ORF1 was designated qacE, and its partially functional deletion derivative, ORF4, was designated qacE delta 1. Fluorimetric experiments indicated that the mechanism of resistance mediated by QacE, the protein specified by qacE, is active export energized by proton motive force. Amino acid sequence comparisons revealed that QacE is related to a family of small multidrug export proteins with four transmembrane segments.
                Bookmark

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                Akadémiai Kiadó
                2062-509X
                2062-8633
                1 March 2015
                26 March 2015
                : 5
                : 1 ( otherID: VRG7W6904000 )
                : 44-61
                Affiliations
                [ 1 ] Molecular Microbiology and Genomics Consultants Tannestrasse 7 55576 Zotzenheim Germany
                [ 2 ] Technical University of Denmark Center for Biological Sequence Analysis, Department of Systems Biology Lyngby Denmark
                [ 3 ] University of Copenhagen Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences Copenhagen Denmark
                [ 4 ] Oak Ridge National Laboratory Comparative Genomics Group, Biosciences Division Oak Ridge TN 37831 USA
                Article
                4714726070488681
                10.1556/EuJMI-D-14-00038
                4397847
                25883793
                Categories
                Review Article

                Comments

                Comment on this article