70
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of Pancreatic β-Cell Function: Review of Methods and Clinical Applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 2 diabetes mellitus (T2DM) is characterized by a progressive failure of pancreatic β-cell function (BCF) with insulin resistance. Once insulin over-secretion can no longer compensate for the degree of insulin resistance, hyperglycemia becomes clinically significant and deterioration of residual β-cell reserve accelerates. This pathophysiology has important therapeutic implications. Ideally, therapy should address the underlying pathology and should be started early along the spectrum of decreasing glucose tolerance in order to prevent or slow β-cell failure and reverse insulin resistance. The development of an optimal treatment strategy for each patient requires accurate diagnostic tools for evaluating the underlying state of glucose tolerance. This review focuses on the most widely used methods for measuring BCF within the context of insulin resistance and includes examples of their use in prediabetes and T2DM, with an emphasis on the most recent therapeutic options (dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists). Methods of BCF measurement include the homeostasis model assessment (HOMA); oral glucose tolerance tests, intravenous glucose tolerance tests (IVGTT), and meal tolerance tests; and the hyperglycemic clamp procedure. To provide a meaningful evaluation of BCF, it is necessary to interpret all observations within the context of insulin resistance. Therefore, this review also discusses methods utilized to quantitate insulin-dependent glucose metabolism, such as the IVGTT and the euglycemic-hyperinsulinemic clamp procedures. In addition, an example is presented of a mathematical modeling approach that can use data from BCF measurements to develop a better understanding of BCF behavior and the overall status of glucose tolerance.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

          Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose clamp technique: a method for quantifying insulin secretion and resistance.

            Methods for the quantification of beta-cell sensitivity to glucose (hyperglycemic clamp technique) and of tissue sensitivity to insulin (euglycemic insulin clamp technique) are described. Hyperglycemic clamp technique. The plasma glucose concentration is acutely raised to 125 mg/dl above basal levels by a priming infusion of glucose. The desired hyperglycemic plateau is subsequently maintained by adjustment of a variable glucose infusion, based on the negative feedback principle. Because the plasma glucose concentration is held constant, the glucose infusion rate is an index of glucose metabolism. Under these conditions of constant hyperglycemia, the plasma insulin response is biphasic with an early burst of insulin release during the first 6 min followed by a gradually progressive increase in plasma insulin concentration. Euglycemic insulin clamp technique. The plasma insulin concentration is acutely raised and maintained at approximately 100 muU/ml by a prime-continuous infusion of insulin. The plasma glucose concentration is held constant at basal levels by a variable glucose infusion using the negative feedback principle. Under these steady-state conditions of euglycemia, the glucose infusion rate equals glucose uptake by all the tissues in the body and is therefore a measure of tissue sensitivity to exogenous insulin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial.

              The effectiveness of intentional weight loss in reducing cardiovascular disease (CVD) events in type 2 diabetes is unknown. This report describes 1-year changes in CVD risk factors in a trial designed to examine the long-term effects of an intensive lifestyle intervention on the incidence of major CVD events. This study consisted of a multicentered, randomized, controlled trial of 5,145 individuals with type 2 diabetes, aged 45-74 years, with BMI >25 kg/m2 (>27 kg/m2 if taking insulin). An intensive lifestyle intervention (ILI) involving group and individual meetings to achieve and maintain weight loss through decreased caloric intake and increased physical activity was compared with a diabetes support and education (DSE) condition. Participants assigned to ILI lost an average 8.6% of their initial weight vs. 0.7% in DSE group (P < 0.001). Mean fitness increased in ILI by 20.9 vs. 5.8% in DSE (P < 0.001). A greater proportion of ILI participants had reductions in diabetes, hypertension, and lipid-lowering medicines. Mean A1C dropped from 7.3 to 6.6% in ILI (P < 0.001) vs. from 7.3 to 7.2% in DSE. Systolic and diastolic pressure, triglycerides, HDL cholesterol, and urine albumin-to-creatinine ratio improved significantly more in ILI than DSE participants (all P < 0.01). At 1 year, ILI resulted in clinically significant weight loss in people with type 2 diabetes. This was associated with improved diabetes control and CVD risk factors and reduced medicine use in ILI versus DSE. Continued intervention and follow-up will determine whether these changes are maintained and will reduce CVD risk.
                Bookmark

                Author and article information

                Journal
                Curr Diabetes Rev
                Curr Diabetes Rev
                CDR
                Current Diabetes Reviews
                Bentham Science Publishers
                1573-3998
                1875-6417
                January 2014
                January 2014
                : 10
                : 1
                : 2-42
                Affiliations
                [1 ]Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78207, USA
                [2 ]Fueerbarg 16a, D-22393, Hamburg, Germany
                [3 ]Amylin Pharmaceuticals, LLC, San Diego, CA 92121, USA
                Author notes
                [* ]Address correspondence to this author at the Texas Diabetes Institute, University of Texas Health Science Center-San Antonio, 701 S. Zarzamora, MS 10-5, San Antonio, TX 78207, USA; Tel: (210) 358-7200; Fax: (210) 358-7235; E-mails: Eugenio.Cersosimo@ 123456uhs-sa.com and Cersosimo@ 123456uthscsa.edu
                Article
                CDR-10-2
                10.2174/1573399810666140214093600
                3982570
                24524730
                cacc110e-6ff8-4775-9dfc-9e4e843b10e3
                © 2014 Bentham Science Publishers

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 July 2013
                : 2 December 2013
                : 3 December 2013
                Categories
                Article

                Endocrinology & Diabetes
                β-cell function,dpp-4 inhibitor,euglycemic-hyperinsulinemic clamp,glp-1 receptor agonist,glucose tolerance test,hyperglycemic clamp,meal tolerance test.

                Comments

                Comment on this article