817
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The miR-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here, we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility, and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.

          During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate that a temporal gradient in Lin-14 protein is generated posttranscriptionally by multiple elements in the lin-14 3'UTR that are regulated by the heterochronic gene Lin-4. The lin-14 3'UTR is both necessary and sufficient to confer lin-4-mediated posttranscriptional temporal regulation. The function of the lin-14 3'UTR is conserved between C. elegans and C. briggsae. Among the conserved sequences are seven elements that are each complementary to the lin-4 RNAs. A reporter gene bearing three of these elements shows partial temporal gradient activity. These data suggest a molecular mechanism for Lin-14p temporal gradient formation: the lin-4 RNAs base pair to sites in the lin-14 3'UTR to form multiple RNA duplexes that down-regulate lin-14 translation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells.

            MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional activation of miR-34a contributes to p53-mediated apoptosis.

              p53 is a potent tumor suppressor, whose biological effects are largely due to its function as a transcriptional regulator. Here we report that, in addition to regulating the expression of hundreds of protein-coding genes, p53 also modulates the levels of microRNAs (miRNAs). Specifically, p53 can induce expression of microRNA-34a (miR-34a) in cultured cells as well as in irradiated mice, by binding to a perfect p53 binding site located within the gene that gives rise to miR-34a. Processing of the primary transcript into mature miR-34a involves the excision of a 30 kb intron. Notably, inactivation of miR-34a strongly attenuates p53-mediated apoptosis in cells exposed to genotoxic stress, whereas overexpression of miR-34a mildly increases apoptosis. Hence, miR-34a is a direct proapoptotic transcriptional target of p53 that can mediate some of p53's biological effects. Perturbation of miR-34a expression, as occurs in some human cancers, may thus contribute to tumorigenesis by attenuating p53-dependent apoptosis.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                21 June 2014
                5 June 2014
                05 December 2014
                : 510
                : 7503
                : 115-120
                Affiliations
                [1 ]Division of Cellular and Developmental Biology, MCB department, University of California at Berkeley, Berkeley, CA 94705, USA
                [2 ]Division of Genetics, Genomics and Development, Centre for Integrative Genomics, MCB department, University of California at Berkeley, Berkeley, CA 94705, USA
                [3 ]Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
                [4 ]The third Military Medical University, Chongqing, China
                [5 ]Department of Molecular Oncology, University of Goettingen, Goettingen, Germany
                Author notes
                [# ]Correspondence and requests for materials should be addressed to LH ( lhe@ 123456berkeley.edu ) and RS ( rui.song@ 123456berkeley.edu )
                [*]

                These authors contributed equally.

                Article
                NIHMS591060
                10.1038/nature13413
                4119886
                24899310
                cadc51df-5ad7-43e5-999f-7ca1c966229c
                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article