10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Superoxide dismutase--mentor of abiotic stress tolerance in crop plants.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.

          Related collections

          Author and article information

          Journal
          Environ Sci Pollut Res Int
          Environmental science and pollution research international
          Springer Nature
          1614-7499
          0944-1344
          Jul 2015
          : 22
          : 14
          Affiliations
          [1 ] Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak, Haryana, 124001, India, ssgill14@yahoo.co.in.
          Article
          10.1007/s11356-015-4532-5
          25921757
          cae216f4-0dbb-4646-bf5f-9628dae13720
          History

          Comments

          Comment on this article