4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biodegradation of Phenanthrene and Heavy Metal Removal by Acid-Tolerant Burkholderia fungorum FM-2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenanthrene (PHE) is a common pollutant of acidic and non-acidic environments that is recalcitrant to biodegradation. Herein, Burkholderia fungorum FM-2 (GenBank accession no. KM263605) was isolated from oil-contaminated soil in Xinjiang and characterized morphologically, physiologically, and phylogenetically. Environmental parameters including PHE concentration, pH, temperature, and salinity were optimized, and heavy metal tolerance was investigated. The MIC of strain FM-2 tolerant to Pb(II) and Cd(II) was 50 and 400 mg L −1, respectively, while the MIC of Zn(II) was >1,200 mg L −1. Atypically for a B. fungorum strain, FM-2 utilized PHE (300 mg L −1) as a sole carbon source over a wide pH range (between pH 3 and 9). PHE and heavy metal metabolism were assessed using gas chromatography (GC), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared (FTIR) spectroscopy and ultraviolet (UV) absorption spectrometry. The effects of heavy metals on the bioremediation of PHE in soil were investigated, and the findings suggest that FM-2 has potential for combined bioremediation of soils co-contaminated with PHE and heavy metals.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

          Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

            Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common features of environmental and potentially beneficial plant-associated Burkholderia.

              The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                14 March 2019
                2019
                : 10
                : 408
                Affiliations
                Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, College of Chemistry and Chemical Engineering, Tianjin University of Technology , Tianjin, China
                Author notes

                Edited by: Zofia Piotrowska-Seget, University of Silesia of Katowice, Poland

                Reviewed by: Yinjie Tang, Washington University in St. Louis, United States; M. Oves, King Abdulaziz University, Saudi Arabia

                *Correspondence: Lei Huang huanglei@ 123456tjut.edu.cn

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00408
                6427951
                30930861
                caea5ebb-0d85-4d92-9fc2-02ec3149e9c6
                Copyright © 2019 Liu, Hu, Cao, Pang, Huang, Guo and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 May 2018
                : 18 February 2019
                Page count
                Figures: 8, Tables: 1, Equations: 1, References: 96, Pages: 13, Words: 10040
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 21777113
                Funded by: Natural Science Foundation of Tianjin City 10.13039/501100006606
                Award ID: 15JCQNJC08800
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                phenanthrene biodegradation,burkholderia fungorum,heavy metal resistance,acid-tolerant bacteria,bioremediation

                Comments

                Comment on this article