68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PANTHER version 10: expanded protein families and functions, and analysis tools

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PANTHER ( Protein Analysis THrough Evolutionary Relationships, http://pantherdb.org) is a widely used online resource for comprehensive protein evolutionary and functional classification, and includes tools for large-scale biological data analysis. Recent development has been focused in three main areas: genome coverage, functional information (‘annotation’) coverage and accuracy, and improved genomic data analysis tools. The latest version of PANTHER, 10.0, includes almost 5000 new protein families (for a total of over 12 000 families), each with a reference phylogenetic tree including protein-coding genes from 104 fully sequenced genomes spanning all kingdoms of life. Phylogenetic trees now include inference of horizontal transfer events in addition to speciation and gene duplication events. Functional annotations are regularly updated using the models generated by the Gene Ontology Phylogenetic Annotation Project. For the data analysis tools, PANTHER has expanded the number of different ‘functional annotation sets’ available for functional enrichment testing, allowing analyses to access all Gene Ontology annotations—updated monthly from the Gene Ontology database—in addition to the annotations that have been inferred through evolutionary relationships. The Prowler (data browser) has been updated to enable users to more efficiently browse the entire database, and to create custom gene lists using the multiple axes of classification in PANTHER.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The PANTHER database of protein families, subfamilies, functions and pathways

          PANTHER is a large collection of protein families that have been subdivided into functionally related subfamilies, using human expertise. These subfamilies model the divergence of specific functions within protein families, allowing more accurate association with function (ontology terms and pathways), as well as inference of amino acids important for functional specificity. Hidden Markov models (HMMs) are built for each family and subfamily for classifying additional protein sequences. The latest version, 5.0, contains 6683 protein families, divided into 31 705 subfamilies, covering ∼90% of mammalian protein-coding genes. PANTHER 5.0 includes a number of significant improvements over previous versions, most notably (i) representation of pathways (primarily signaling pathways) and association with subfamilies and individual protein sequences; (ii) an improved methodology for defining the PANTHER families and subfamilies, and for building the HMMs; (iii) resources for scoring sequences against PANTHER HMMs both over the web and locally; and (iv) a number of new web resources to facilitate analysis of large gene lists, including data generated from high-throughput expression experiments. Efforts are underway to add PANTHER to the InterPro suite of databases, and to make PANTHER consistent with the PIRSF database. PANTHER is now publicly available without restriction at http://panther.appliedbiosystems.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios.

            Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools

              The vast amount of protein sequence data now available, together with accumulating experimental knowledge of protein function, enables modeling of protein sequence and function evolution. The PANTHER database was designed to model evolutionary sequence–function relationships on a large scale. There are a number of applications for these data, and we have implemented web services that address three of them. The first is a protein classification service. Proteins can be classified, using only their amino acid sequences, to evolutionary groups at both the family and subfamily levels. Specific subfamilies, and often families, are further classified when possible according to their functions, including molecular function and the biological processes and pathways they participate in. The second application, then, is an expression data analysis service, where functional classification information can help find biological patterns in the data obtained from genome-wide experiments. The third application is a coding single-nucleotide polymorphism scoring service. In this case, information about evolutionarily related proteins is used to assess the likelihood of a deleterious effect on protein function arising from a single substitution at a specific amino acid position in the protein. All three web services are available at .
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 January 2016
                17 November 2015
                17 November 2015
                : 44
                : Database issue , Database issue
                : D336-D342
                Affiliations
                Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 323 442 7975; Fax: +1 323 442 7995; Email:  pdthomas@ 123456usc.edu
                Correspondence may also be addressed to Huaiyu Mi. Tel: +1 323 442 7994; Fax: +1 323 442 7995; Email: huaiyumi@ 123456usc.edu
                Article
                10.1093/nar/gkv1194
                4702852
                26578592
                caf50158-6857-49e1-ba1e-270ade7d738b
                © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 23 October 2015
                : 22 October 2015
                : 28 September 2015
                Page count
                Pages: 7
                Categories
                Database Issue
                Custom metadata
                04 January 2016

                Genetics
                Genetics

                Comments

                Comment on this article