51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV-1 gp41 Core with Exposed Membrane-Proximal External Region Inducing Broad HIV-1 Neutralizing Antibodies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The membrane-proximal external region (MPER) of the HIV-1 gp41 consists of epitopes for the broadly cross-neutralizing monoclonal antibodies 2F5 and 4E10. However, antigens containing the linear sequence of these epitopes are unable to elicit potent and broad neutralizing antibody responses in vaccinated hosts, possibly because of inappropriate conformation of these epitopes. Here we designed a recombinant antigen, designated NCM, which comprises the N- and C-terminal heptad repeats that can form a six-helix bundle (6HB) core and the MPER domain of gp41. Two mutations (T569A and I675V) previously reported to expose the neutralization epitopes were introduced into NCM to generate mutants named NCM(TA), NCM(IV), and NCM(TAIV). Our results showed that NCM and its mutants could react with antibodies specific for 6HB and MPER of gp41, suggesting that these antigens are in the form of a trimer of heterodimer (i.e., 6HB) with three exposed MPER tails. Antigen with double mutations, NCM(TAIV), elicited much stronger antibody response in rabbits than immunogens with single mutation, NCM(TA) and NCM(IV), or no mutation, NCM. The purified MPER-specific antibodies induced by NCM(TAIV) exhibited broad neutralizing activity, while the purified 6HB-specific antibodies showed no detectable neutralizing activity. Our recombinant antigen design supported by an investigation of its underlying molecular mechanisms provides a strong scientific platform for the discovery of a gp41 MPER-based AIDS vaccine.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41.

            Broadly neutralizing monoclonal antibodies to HIV-1 are rare but invaluable for vaccine design. 4E10 is the broadest neutralizing antibody known and recognizes a contiguous and highly conserved epitope in the membrane-proximal region of gp41. The crystal structure of Fab 4E10 was determined at 2.2 A resolution in complex with a 13-residue peptide containing the gp41 core epitope (NWFDIT). The bound peptide adopts a helical conformation in which the key contact residues, TrpP672, PheP673, IleP675, and ThrP676, map to one face of the helix. The peptide binds in a hydrophobic pocket that may emulate its potential interaction with the host cell membrane. The long CDR H3 of the antibody extends beyond the bound peptide in an orientation that suggests that its apex could contact the viral membrane when 4E10 is bound to its membrane-proximal epitope. These structural insights should assist in the design of immunogens to elicit 4E10-like neutralizing responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope.

              The membrane-proximal region of the ectodomain of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the target of three of the five broadly neutralizing anti-HIV-1 antibodies thus far isolated. We have determined crystal structures of the antigen-binding fragment for one of these antibodies, 2F5, in complex with 7-mer, 11-mer, and 17-mer peptides of the gp41 membrane-proximal region, at 2.0-, 2.1-, and 2.2-A resolutions, respectively. The structures reveal an extended gp41 conformation, which stretches over 30 A in length. Contacts are made with five complementarity-determining regions of the antibody as well as with nonpolymorphic regions. Only one exclusive charged face of the gp41 epitope is bound by 2F5, while the nonbound face, which is hydrophobic, may be hidden due to occlusion by other portions of the ectodomain. The structures reveal that the 2F5 antibody is uniquely built to bind to an epitope that is proximal to a membrane surface and in a manner mostly unaffected by large-scale steric hindrance. Biochemical studies with proteoliposomes confirm the importance of lipid membrane and hydrophobic context in the binding of 2F5 as well as in the binding of 4E10, another broadly neutralizing antibody that recognizes the membrane-proximal region of gp41. Based on these structural and biochemical results, immunization strategies for eliciting 2F5- and 4E10-like broadly neutralizing anti-HIV-1 antibodies are proposed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                31 March 2011
                : 6
                : 3
                : e18233
                Affiliations
                [1 ]School of Life Sciences, Tsinghua University, Beijing, China
                [2 ]New York Blood Center, Lindsley F. Kimball Research Institute, New York, New York, United States of America
                [3 ]Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
                Beckman Research Institute of the City of Hope, United States of America
                Author notes

                Conceived and designed the experiments: YHC SJ. Performed the experiments: JW PT LL LZ LX. Analyzed the data: JW YHC SJ. Wrote the paper: JW YHC SJ.

                Article
                PONE-D-10-06167
                10.1371/journal.pone.0018233
                3069051
                21483871
                cafe54c2-48c1-481a-9c94-57f0cfe32c2f
                Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 December 2010
                : 23 February 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Immunology
                Immune Response
                Microbiology
                Virology
                Viral Vaccines
                Medicine
                Infectious Diseases
                Viral Diseases
                HIV

                Uncategorized
                Uncategorized

                Comments

                Comment on this article