37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Human PrM Antibody That Recognizes a Novel Cryptic Epitope on Dengue E Glycoprotein

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue virus (DENV) is a major mosquito-borne pathogen infecting up to 100 million people each year; so far no effective treatment or vaccines are available. Recently, highly cross-reactive and infection-enhancing pre-membrane (prM)-specific antibodies were found to dominate the anti-DENV immune response in humans, raising concern over vaccine candidates that contain native dengue prM sequences. In this study, we have isolated a broadly cross-reactive prM-specific antibody, D29, during a screen with a non-immunized human Fab-phage library against the four serotypes of DENV. The antibody is capable of restoring the infectivity of virtually non-infectious immature DENV (imDENV) in FcγR-bearing K562 cells. Remarkably, D29 also cross-reacted with a cryptic epitope on the envelope (E) protein located to the DI/DII junction as evidenced by site-directed mutagenesis. This cryptic epitope, while inaccessible to antibody binding in a native virus particle, may become exposed if E is not properly folded. These findings suggest that generation of anti-prM antibodies that enhance DENV infection may not be completely avoided even with immunization strategies employing E protein alone or subunits of E proteins.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity.

          Antibodies protect against homologous Dengue virus (DENV) infection but can precipitate severe dengue by promoting heterotypic virus entry via Fcγ receptors (FcγR). We immortalized memory B cells from individuals after primary or secondary infection and analyzed anti-DENV monoclonal antibodies (mAbs) thus generated. MAbs to envelope (E) protein domain III (DIII) were either serotype specific or cross-reactive and potently neutralized DENV infection. DI/DII- or viral membrane protein prM-reactive mAbs neutralized poorly and showed broad cross-reactivity with the four DENV serotypes. All mAbs enhanced infection at subneutralizing concentrations. Three mAbs targeting distinct epitopes on the four DENV serotypes and engineered to prevent FcγR binding did not enhance infection and neutralized DENV in vitro and in vivo as postexposure therapy in a mouse model of lethal DENV infection. Our findings reveal an unexpected degree of cross-reactivity in human antibodies against DENV and illustrate the potential for an antibody-based therapy to control severe dengue. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenesis of dengue: challenges to molecular biology.

            Dengue viruses occur as four antigenically related but distinct serotypes transmitted to humans by Aedes aegypti mosquitoes. These viruses generally cause a benign syndrome, dengue fever, in the American and African tropics, and a severe syndrome, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), in Southeast Asian children. This severe syndrome, which recently has also been identified in children infected with the virus in Puerto Rico, is characterized by increased vascular permeability and abnormal hemostasis. It occurs in infants less than 1 year of age born to dengue-immune mothers and in children 1 year and older who are immune to one serotype of dengue virus and are experiencing infection with a second serotype. Dengue viruses replicate in cells of mononuclear phagocyte lineage, and subneutralizing concentrations of dengue antibody enhance dengue virus infection in these cells. This antibody-dependent enhancement of infection regulates dengue disease in human beings, although disease severity may also be controlled genetically, possibly by permitting and restricting the growth of virus in monocytes. Monoclonal antibodies show heterogeneous distribution of antigenic epitopes on dengue viruses. These epitopes serve to regulate disease: when antibodies to shared antigens partially neutralize heterotypic virus, infection and disease are dampened; enhancing antibodies alone result in heightened disease response. Further knowledge of the structure of dengue genomes should permit rapid advances in understanding the pathogenetic mechanisms of dengue.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Research on dengue during World War II.

              A SABIN (1952)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                3 April 2012
                : 7
                : 4
                : e33451
                Affiliations
                [1 ]Bio-Defence Programme, DMERI, DSO National Laboratories, Singapore, Singapore
                [2 ]Department of Microbiology, National University of Singapore, Singapore
                [3 ]Emerging Infectious Diseases Programme, Duke-NUS Graduate Medical School, Singapore, Singapore
                [4 ]Center for BioImaging Sciences, National University of Singapore, Singapore
                University of Pittsburgh, United States America
                Author notes

                Conceived and designed the experiments: AHYC EEO BJH. Performed the experiments: AHYC HCT AYC PAM. Analyzed the data: AHYC EEO BJH. Contributed reagents/materials/analysis tools: SML NJM SGV APCL. Wrote the paper: AHYC BJH.

                Article
                PONE-D-11-12236
                10.1371/journal.pone.0033451
                3317930
                22509258
                cb0c5fc0-21d6-4801-8cab-cd30d875f4c6
                Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 June 2011
                : 14 February 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Immunologic Techniques
                Microbiology
                Virology
                Medicine
                Infectious Diseases
                Tropical Diseases (Non-Neglected)
                Viral Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article