1,128
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Glycosaminoglycan Based, Modular Tissue Scaffold System for Rapid Assembly of Perfusable, High Cell Density, Engineered Tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and promoting extensive vascularization. In this paper, we report the elements of a simple yet efficient method for fabricating vascularized tissue constructs by fusing biodegradable microcapsules with tunable interior environments. Parenchymal cells of various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes) were suspended in glycosaminoglycan (GAG) solutions (4%/1.5% chondroitin sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan) and encapsulated by forming chitosan-GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior capsule environment could be further tuned by blending collagen with or suspending microcarriers in the GAG solution These capsule modules were seeded externally with vascular endothelial cells (VEC), and subsequently fused into tissue constructs possessing VEC-lined, inter-capsule channels. The microcapsules supported high density growth achieving clinically significant cell densities. Fusion of the endothelialized, capsules generated three dimensional constructs with an embedded network of interconnected channels that enabled long-term perfusion culture of the construct. A prototype, engineered liver tissue, formed by fusion of hepatocyte-containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to standard collagen sandwich hepatocyte cultures. The capsule based, modular approach described here has the potential to allow rapid assembly of tissue constructs with clinically significant cell densities, uniform cell distribution, and endothelialized, perfusable channels.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular regulation of vessel maturation.

          The maturation of nascent vasculature, formed by vasculogenesis or angiogenesis, requires recruitment of mural cells, generation of an extracellular matrix and specialization of the vessel wall for structural support and regulation of vessel function. In addition, the vascular network must be organized so that all the parenchymal cells receive adequate nutrients. All of these processes are orchestrated by physical forces as well as by a constellation of ligands and receptors whose spatio-temporal patterns of expression and concentration are tightly regulated. Inappropriate levels of these physical forces or molecules produce an abnormal vasculature--a hallmark of various pathologies. Normalization of the abnormal vasculature can facilitate drug delivery to tumors and formation of a mature vasculature can help realize the promise of therapeutic angiogenesis and tissue engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organ printing: computer-aided jet-based 3D tissue engineering.

            Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of the biocompatibility of a chitosan scaffold in mice.

              Chitosan scaffolds appear to be suitable for a variety of tissue engineering applications. This study addressed the biocompatibility of chitosan in a mouse implantation model. Porous chitosan scaffolds were implanted in mice, and animals were sacrificed after 1, 2, 4, 8, or 12 weeks. Macroscopic inspection of the implantation site revealed no pathological inflammatory responses. Histological assessment indicated marked neutrophil accumulation within the implant, which resolved with increasing implantation time. Gram staining and limulus assays revealed no evidence of infection or endotoxin. Collagen was observed within the chitosan pore spaces, indicating that connective tissue matrix was deposited within the implant. Angiogenic activity associated with the external implant surface was also observed. Cellular immune responses were determined by lymphocyte proliferation assays, and antibody responses were measured using ELISA techniques. These assays indicated a very low incidence of chitosan-specific reactions. Although there was a large migration of neutrophils into the implantation area, there were minimal signs of any inflammatory reaction to the material itself. This preliminary study demonstrates that chitosan has a high degree of biocompatibility in this animal model. Overall, the findings suggest that chitosan may be suitable for the development of implantable materials. Copyright 2001 John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                20 January 2014
                : 9
                : 1
                : e84287
                Affiliations
                [1 ]Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
                [2 ]Departments of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, United States of America
                [3 ]Program in Reproductive & Adult Endocrinology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
                [4 ]Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, United States of America
                Michigan State University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HWTM RTA. Performed the experiments: RTA. Analyzed the data: RTA HWTM. Contributed reagents/materials/analysis tools: DRA HWTM. Wrote the paper: RTA HWTM.

                Article
                PONE-D-13-24568
                10.1371/journal.pone.0084287
                3896358
                24465401
                cb124e77-f7df-49d2-8193-3aaab4cd795e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 June 2013
                : 20 November 2013
                Page count
                Pages: 15
                Funding
                Funding for these studies was provided by a DRICTR award from Wayne State University, and grant awards from the National Science Foundation (CBET-1067323) and the National Institutes of Health (HD067629). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Biomaterials
                Tissue Engineering
                Chemistry
                Chemical Engineering
                Engineering
                Bioengineering
                Biomedical Engineering
                Chemical Engineering
                Materials Science
                Biomaterials
                Material by Structure
                Polymers
                Biopolymers
                Microtechnology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article