9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of anaerobic digestion process: a review.

          Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Biogas: Developments and perspectives in Europe

              • Record: found
              • Abstract: found
              • Article: not found

              Anaerobic digestion of food waste – Challenges and opportunities

              The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology.

                Author and article information

                Contributors
                Journal
                Process Safety and Environmental Protection
                Process Safety and Environmental Protection
                Elsevier BV
                09575820
                November 2023
                November 2023
                : 179
                : 546-558
                Article
                10.1016/j.psep.2023.09.030
                cb127fdb-0561-4537-8917-12098bd8e69b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                History

                Comments

                Comment on this article

                Related Documents Log