44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subchronic Treatment of Donepezil Rescues Impaired Social, Hyperactive, and Stereotypic Behavior in Valproic Acid-Induced Animal Model of Autism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioural phenotyping assays for mouse models of autism.

          Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100-150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of autism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior.

            Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'.

              Rats and mice have a tendency to interact more with a novel object than with a familiar object. This tendency has been used by behavioral pharmacologists and neuroscientists to study learning and memory. A popular protocol for such research is the object-recognition task. Animals are first placed in an apparatus and allowed to explore an object. After a prescribed interval, the animal is returned to the apparatus, which now contains the familiar object and a novel object. Object recognition is distinguished by more time spent interacting with the novel object. Although the exact processes that underlie this 'recognition memory' requires further elucidation, this method has been used to study mutant mice, aging deficits, early developmental influences, nootropic manipulations, teratological drug exposure and novelty seeking.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                18 August 2014
                : 9
                : 8
                : e104927
                Affiliations
                [1 ]Department of Neuroscience, School of Medicine, Konkuk University, Seoul, Korea
                [2 ]Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
                [3 ]Department of Pharmacology, College of Pharmacy, Sahmyook University, Seoul, Korea
                [4 ]Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Korea
                Weizmann Institute of Science, Israel
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JWK CYS GHB KCK. Performed the experiments: JWK HS KJK MJK EJL HAO CSC. Analyzed the data: JWK HS MJK KJK. Contributed reagents/materials/analysis tools: KJK SHH CSC SMY JSY DHC JL JHC. Wrote the paper: JWK ELG CYS GHB.

                Article
                PONE-D-14-07550
                10.1371/journal.pone.0104927
                4136791
                25133713
                cb295d55-d9fe-474c-a970-f13fe7db69d7
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 February 2014
                : 16 July 2014
                Page count
                Pages: 12
                Funding
                This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of health & welfare, Republic of Korea (No. A120029). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Child Psychiatry
                Neuropsychiatric Disorders
                Neurology
                Neuropharmacology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article