2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular record for the first authentication of Isaria cicadae from Vietnam

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The entomopathogenic fungus T011, parasitizing on nymph of Cicada, collected in the coffee garden in Dak Lak Province, Vietnam, was preliminarily morphologically identified as Isaria cicadae, belonged to order Hypocreales and family Clavicipitaceae. To ensure the authenticity of T011, phylogenetic analysis of the concatenated set of multiple genes including ITS, nrLSU, nrSSU, Rpb1, and Tef1 was applied to support the identification. Genomic DNA was isolated from dried sample T011. The PCR assay sequencing was applied to amplify ITS, nrLSU, nrSSU, Rpb1, and Tef1 gene. For phylogenetic analysis, the concatenated data of both target gens were constructed with MEGAX with a 1,000 replicate bootstrap based on the neighbor-joining, maximum likelihood, maximum parsimony method. As the result, the concatenated data containing 62 sequences belonged to order Hypocreales, families Clavicipitaceae, and 2 outgroup sequences belonged to order Hypocreales, genus Verticillium. The phylogenetic analysis results indicated that T011 was accepted at subclade Cordyceps and significantly formed the monophyletic group with referent Cordyceps cicadae (Telemorph of Isaria cicadae) with high bootstrap value. The phylogenetically analyzed result was strongly supported by our morphological analysis described as the Isaria cicadae. In summary, phylogenetic analyses based on the concatenated dataset were successfully applied to strengthen the identification of T011 as Isaria cicadae.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species.

            Detailed restriction analyses of many samples often require substantial amounts of time and effort for DNA extraction, restriction digests, Southern blotting, and hybridization. We describe a novel approach that uses the polymerase chain reaction (PCR) for rapid simplified restriction typing and mapping of DNA from many different isolates. DNA fragments up to 2 kilobase pairs in length were efficiently amplified from crude DNA samples of several pathogenic Cryptococcus species, including C. neoformans, C. albidus, C. laurentii, and C. uniguttulatus. Digestion and electrophoresis of the PCR products by using frequent-cutting restriction enzymes produced complex restriction phenotypes (fingerprints) that were often unique for each strain or species. We used the PCR to amplify and analyze restriction pattern variation within three major portions of the ribosomal DNA (rDNA) repeats from these fungi. Detailed mapping of many restriction sites within the rDNA locus was determined by fingerprint analysis of progressively larger PCR fragments sharing a common primer site at one end. As judged by PCR fingerprints, the rDNA of 19 C. neoformans isolates showed no variation for four restriction enzymes that we surveyed. Other Cryptococcus spp. showed varying levels of restriction pattern variation within their rDNAs and were shown to be genetically distinct from C. neoformans. The PCR primers used in this study have also been successfully applied for amplification of rDNAs from other pathogenic and nonpathogenic fungi, including Candida spp., and ought to have wide applicability for clinical detection and other studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phylogenetic classification of Cordyceps and the clavicipitaceous fungi

              Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1α (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), β-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceae s. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceae s. s. Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.
                Bookmark

                Author and article information

                Contributors
                Journal
                Open Life Sci
                Open Life Sci
                biol
                Open Life Sciences
                De Gruyter
                2391-5412
                15 July 2021
                2021
                : 16
                : 1
                : 711-718
                Affiliations
                Department of Pharmaceutical and Medical Biotechnology, Faculty of Biotechnology , Ho Chi Minh City Open University , Ho Chi Minh City, Vietnam
                University of Science , VNU-HCM , Ho Chi Minh City, Vietnam
                Institute of Applied Technology, Thu Dau Mot University , Binh Duong, Vietnam
                Department of Agriculture and Rural Development of Ho Chi Minh City , Ho Chi Minh City, Vietnam
                Faculty of Biology , Dalat University , Lam Dong, Vietnam
                Author notes
                [1]

                Equal contributors.

                Article
                biol-2021-0074
                10.1515/biol-2021-0074
                8284333
                34307886
                cb338d93-1d0d-40ce-b843-eca71590d705
                © 2021 Thuan Duc Lao et al., published by De Gruyter

                This work is licensed under the Creative Commons Attribution 4.0 International License.

                History
                : 18 February 2020
                : 01 June 2021
                : 19 June 2021
                Page count
                Pages: 8
                Categories
                Research Article

                nuclear small ribosomal subunit,nuclear large ribosomal subunit,isaria cicadae,phylogeny

                Comments

                Comment on this article