1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virtual Screening and Optimization of Novel mTOR Inhibitors for Radiosensitization of Hepatocellular Carcinoma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Radiotherapy has an ameliorative effect on a wide variety of tumors, but hepatocellular carcinoma (HCC) is insensitive to this treatment. Overactivated mammalian target of rapamycin (mTOR) plays an important part in the resistance of HCC to radiotherapy; thus, mTOR inhibitors have potential as novel radiosensitizers to enhance the efficacy of radiotherapy for HCC.

          Methods

          A lead compound was found based on pharmacophore modeling and molecular docking, and optimized according to the differences between the ATP-binding pockets of mTOR and PI3K. The radiosensitizing effect of the optimized compound ( 2a) was confirmed by colony formation assays and DNA double-strand break assays in vitro. The discovery and preclinical characteristics of this compound are described.

          Results

          The key amino acid residues in mTOR were identified, and a precise virtual screening model was constructed. Compound 2a, with a 4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine scaffold, exhibited promising potency against mTOR (mTOR IC 50=7.1 nmol/L (nM)) with 126-fold selectivity over PI3Kα. Moreover, 2a significantly enhanced the sensitivity of HCC to radiotherapy in vitro in a dose-dependent manner.

          Conclusion

          A new class of selective mTOR inhibitors was developed and their radiosensitization effects were confirmed. This study also provides a basis for developing mTOR-specific inhibitors for use as radiosensitizers for HCC radiotherapy.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study.

          Patients with persistent/recurrent epithelial ovarian cancer/primary peritoneal cancer (EOC/PPC) have limited treatment options. AKT and PI3K pathway activation is common in EOC/PPC, resulting in constitutive activation of downstream mTOR. The GOG conducted a phase II evaluation of efficacy and safety for the mTOR inhibitor, temsirolimus in EOC/PPC and explored circulating tumor cells (CTC) and AKT/mTOR/downstream tumor markers. Eligible women with measurable, persistent/recurrent EOC/PPC who had received 1-3 prior regimens were treated with 25mg weekly IV temsirolimus until progression or intolerable toxicity. Primary endpoints were progression-free survival (PFS) ≥6-months, tumor response, and toxicity. CellSearch® system was used to examine CTC, and AKT/mTOR/downstream markers were evaluated by archival tumor immunohistochemistry. Kendall's tau-b correlation coefficient (r) and Cox regression modeling were used to explore marker associations with baseline characteristics and outcome. Sixty patients were enrolled in a two-stage sequential design. Of 54 eligible and evaluable patients, 24.1% (90% CI 14.9%-38.6%) had PFS ≥6 months (median 3.1 months), 9.3% (90% CI 3.7%-23.4%) experienced a partial response. Grade 3/4 adverse events included metabolic (8), gastrointestinal (8), pain (6), constitutional (5) and pulmonary (4). Suggested associations were between cyclin D1 and PFS ≥6 months, PFS or survival; positive CTC pre-treatment and lack of response; and high CTC expression of M30 and PFS ≥6 months/longer PFS. Temsirolimus appears to have modest activity in persistent/recurrent EOC/PPC; however, PFS is just below that required to warrant inclusion in phase III studies in unselected patients. Cyclin D1 as a selection marker and CTC measures merit further study. Published by Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2.

            The mammalian target of rapamycin (mTOR) is a major component of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway that is dysregulated in 50% of all human malignancies. Rapamycin and its analogues (rapalogs) partially inhibit mTOR through allosteric binding to mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report WYE-125132 (WYE-132), a highly potent, ATP-competitive, and specific mTOR kinase inhibitor (IC(50): 0.19 +/- 0.07 nmol/L; >5,000-fold selective versus PI3Ks). WYE-132 inhibited mTORC1 and mTORC2 in diverse cancer models in vitro and in vivo. Importantly, consistent with genetic ablation of mTORC2, WYE-132 targeted P-AKT(S473) and AKT function without significantly reducing the steady-state level of the PI3K/PDK1 activity biomarker P-AKT(T308), highlighting a prominent and direct regulation of AKT by mTORC2 in cancer cells. Compared with the rapalog temsirolimus/CCI-779, WYE-132 elicited a substantially stronger inhibition of cancer cell growth and survival, protein synthesis, cell size, bioenergetic metabolism, and adaptation to hypoxia. Oral administration of WYE-132 to tumor-bearing mice showed potent single-agent antitumor activity against MDA361 breast, U87MG glioma, A549 and H1975 lung, as well as A498 and 786-O renal tumors. An optimal dose of WYE-132 achieved a substantial regression of MDA361 and A549 large tumors and caused complete regression of A498 large tumors when coadministered with bevacizumab. Our results further validate mTOR as a critical driver for tumor growth, establish WYE-132 as a potent and profound anticancer agent, and provide a strong rationale for clinical development of specific mTOR kinase inhibitors as new cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells.

              The mammalian target of rapamycin (mTOR) has been suggested as a target for radiosensitization. Given that radiotherapy is a primary treatment modality for glioblastoma (GBM) and that mTOR is often dysregulated in GBM, the goal of this study was to determine the effects of AZD2014, a dual mTORC1/2 inhibitor, on the radiosensitivity of GBM stem-like cells (GSCs). mTORC1 and mTORC2 activities were defined by immunoblot analysis. The effects of this mTOR inhibitor on the in vitro radiosensitivity of GSCs were determined using a clonogenic assay. DNA double strand breaks were evaluated according to γH2AX foci. Orthotopic xenografts initiated from GSCs were used to define the in vivo response to AZD2014 and radiation. Exposure of GSCs to AZD2014 resulted in the inhibition of mTORC1 and 2 activities. Based on clonogenic survival analysis, addition of AZD2014 to culture media 1 hour before irradiation enhanced the radiosensitivity of CD133+ and CD15+ GSC cell lines. Whereas AZD2014 treatment had no effect on the initial level of γH2AX foci, the dispersal of radiation-induced γH2AX foci was significantly delayed. Finally, the combination of AZD2014 and radiation delivered to mice bearing GSC-initiated orthotopic xenografts significantly prolonged survival as compared with the individual treatments. These data indicate that AZD2014 enhances the radiosensitivity of GSCs both in vitro and under orthotopic in vivo conditions and suggest that this effect involves an inhibition of DNA repair. Moreover, these results suggest that this dual mTORC1/2 inhibitor may be a radiosensitizer applicable to GBM therapy.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                08 May 2020
                2020
                : 14
                : 1779-1798
                Affiliations
                [1 ]Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430072, People’s Republic of China
                [2 ]Comprehensive Liver Cancer Department, The Fifth Medical Center, Chinese PLA General Hospital , Beijing 100039, People’s Republic of China
                [3 ]Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education , Shenyang 110016, People’s Republic of China
                [4 ]National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology , Beijing 100850, People’s Republic of China
                Author notes
                Correspondence: Shuang Cao; Heng Zhang Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan430072, People’s Republic of China Tel/Fax +86-18701418117; +86-15994288097 Email caoshuang@wit.edu.cn; zhzpthm@163.com
                [*]

                These authors contributed equally to this work

                Article
                249156
                10.2147/DDDT.S249156
                7220363
                © 2020 Feng et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, Tables: 3, References: 53, Pages: 20
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine

                virtual docking, hcc, kinase inhibitor, mtor, radiosensitizer

                Comments

                Comment on this article