15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters.

          P. de Leva (1996)
          Zatsiorsky et al. (in Contemporary Problems in Biomechanics, pp. 272-291, CRC Press, Massachusetts, 1990a) obtained, by means of a gamma-ray scanning technique, the relative body segment masses, center of mass (CM) positions, and radii of gyration for samples of college-aged Caucasian males and females. Although these data are the only available and comprehensive set of inertial parameters regarding young adult Caucasians, they have been rarely utilized for biomechanical analyses of subjects belonging to the same or a similar population. The main reason is probably that Zatsiorsky et al. used bony landmarks as reference points for locating segment CMs and defining segment lengths. Some of these landmarks were markedly distant from the joint centers currently used by most researchers as reference points. The purpose of this study was to adjust the mean relative CM positions and radii of gyration reported by Zatsiorsky et al., in order to reference them to the joint centers or other commonly used landmarks, rather than the original landmarks. The adjustments were based on a number of carefully selected sources of anthropometric data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biomechanics of running.

            This review article summarizes the current literature regarding the analysis of running gait. It is compared to walking and sprinting. The current state of knowledge is presented as it fits in the context of the history of analysis of movement. The characteristics of the gait cycle and its relationship to potential and kinetic energy interactions are reviewed. The timing of electromyographic activity is provided. Kinematic and kinetic data (including center of pressure measurements, raw force plate data, joint moments, and joint powers) and the impact of changes in velocity on these findings is presented. The status of shoewear literature, alterations in movement strategies, the role of biarticular muscles, and the springlike function of tendons are addressed. This type of information can provide insight into injury mechanisms and training strategies. Copyright 1998 Elsevier Science B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spring in the arch of the human foot.

              Large mammals, including humans, save much of the energy needed for running by means of elastic structures in their legs and feet. Kinetic and potential energy removed from the body in the first half of the stance phase is stored briefly as elastic strain energy and then returned in the second half by elastic recoil. Thus the animal runs in an analogous fashion to a rubber ball bouncing along. Among the elastic structures involved, the tendons of distal leg muscles have been shown to be important. Here we show that the elastic properties of the arch of the human foot are also important.
                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2018
                January 2018
                : 50
                : 1
                : 98-108
                Article
                10.1249/MSS.0000000000001420
                28902682
                cb41593e-e4c3-4754-8d79-527e4419cdcb
                © 2018
                History

                Comments

                Comment on this article