60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites

      , ,
      Materials Chemistry and Physics
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC).

          The objective of this article is to review the spectrum of mathematical models that have been developed to describe drug release from hydroxypropyl methylcellulose (HPMC)-based pharmaceutical devices. The major advantages of these models are: (i) the elucidation of the underlying mass transport mechanisms; and (ii) the possibility to predict the effect of the device design parameters (e.g., shape, size and composition of HPMC-based matrix tablets) on the resulting drug release rate, thus facilitating the development of new pharmaceutical products. Simple empirical or semi-empirical models such as the classical Higuchi equation and the so-called power law, as well as more complex mechanistic theories that consider diffusion, swelling and dissolution processes simultaneously are presented, and their advantages and limitations are discussed. Various examples of practical applications to experimental drug release data are given. The choice of the appropriate mathematical model when developing new pharmaceutical products or elucidating drug release mechanisms strongly depends on the desired or required predictive ability and accuracy of the model. In many cases, the use of a simple empirical or semi-empirical model is fully sufficient. However, when reliable, detailed information are required, more complex, mechanistic theories must be applied. The present article is a comprehensive review of the current state of the art of mathematical modeling drug release from HPMC-based delivery systems and discusses the crucial points of the most important theories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silver ion release from antimicrobial polyamide/silver composites.

            Silver ion (Ag(+)) the versatile antimicrobial species was released in a steady and prolonged manner from a silver-filled polyamide composite system. Metallic silver powder having varying specific surface area (SSA) has been used as a resource of biocide in polyamide. Strong evidences are found showing the release of the antimicrobial species from the resulting composite upon soaking it in water due to the interaction of the diffused water molecules with the dispersed silver powder within the matrix. The Ag(+) release was observed as increasing with time and concentration of the silver powder and is found to be influenced by the SSA of the silver powder, changes in the physical state of the composite specimen as a result of the water diffusion and the composite morphology. It is observed that the Ag(+) release increases initially which is followed by a marginal increase between day 4 and 6. Composites containing higher amounts of silver (4 and 8 wt%) exhibit a further rise in Ag(+) release from the sixth day of storage in water. Composite containing silver particles with the lowest specific surface area (0.78 m(2)/g) showed highest Ag(+) release. SEM shows a finer dispersion of the silver powder (4 wt%) having lowest SSA. However particles with higher (1.16 and 2.5 m(2)/g) SSA possess an agglomerated morphology leading to lower Ag(+) release. The composites are found to release Ag(+) at a concentration level capable of rendering an antimicrobial efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?

              Implantable devices are major risk factors for hospital-acquired infection. Biomaterials coated with silver oxide or silver alloy have all been used in attempts to reduce infection, in most cases with controversial or disappointing clinical results. We have developed a completely new approach using supercritical carbon dioxide to impregnate silicone with nanoparticulate silver metal. This study aimed to evaluate the impregnated polymer for antimicrobial activity. After impregnation the nature of the impregnation was determined by transmission electron microscopy. Two series of polymer discs were then tested, one washed in deionized water and the other unwashed. In each series, half of the discs were coated with a plasma protein conditioning film. The serial plate transfer test was used as a screen for persisting activity. Bacterial adherence to the polymers and the rate of kill, and effect on planktonic bacteria were measured by chemiluminescence and viable counts. Release rates of silver ions from the polymers in the presence and absence of plasma was measured using inductively coupled plasma mass spectrometry (ICP-MS). Tests for antimicrobial activity under various conditions showed mixed results, explained by the modes and rates of release of silver ions. While washing removed much of the initial activity there was continued release of silver ions. Unexpectedly, this was not blocked by conditioning film. The methodology allows for the first time silver impregnation (as opposed to coating) of medical polymers and promises to lead to an antimicrobial biomaterial whose activity is not restricted by increasing antibiotic resistance.
                Bookmark

                Author and article information

                Journal
                Materials Chemistry and Physics
                Materials Chemistry and Physics
                Elsevier BV
                02540584
                March 2008
                March 2008
                : 108
                : 1
                : 61-66
                Article
                10.1016/j.matchemphys.2007.09.002
                cb4baf33-d2d7-4cf9-8735-6a5ac0be00ec
                © 2008

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article