23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quaternary climate change and habitat preference shaped the genetic differentiation and phylogeography of Rhodiola sect. Prainia in the southern Qinghai–Tibetan Plateau

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are two long‐standing biogeographic hypotheses regarding the glacial survival of plant species in the Qinghai–Tibetan Plateau (QTP): the in situ survival hypothesis and the tabula rasa hypothesis. We tested these two hypotheses in a phylogeographic study of Rhodiola sect. Prainia, a monophyletic section with ecologically divergent lineages. Molecular data from the nuclear internal transcribed spacer, six plastid markers and 13 nuclear microsatellite loci were analyzed for 240 individuals from 19 populations of this section. Environmental data were used to analyze the niches of major phylogenetic lineages within this section and to model changes in their distributions since the Last Glacial Maximum (LGM). We found that Rhodiola sect. Prainia consists of three evolutionary lineages: all populations of R. stapfii, R. prainii populations at the southern edge of the QTP, and R. prainii populations in the interior part of the QTP. During the LGM, the survival of R. prainii in the interior part of the QTP corresponded with the in situ survival hypothesis, while R. stapfii most probably survived the LGM in a manner corresponding with the tabula rasa hypothesis. The evolutionary history of different lineages of this section was shaped by topography, climate change, and lineage‐specific habitat preferences.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae).

          The coding region of the mat K gene and two intergenic spacers, psb A-trn H and trn L(UAA)-trn F(GAA), of cpDNA were sequenced to study phylogenetic relationships of 32 Paeonia species. In the psb A-trn H intergenic spacer, short sequences bordered by long inverted repeats have undergone inversions that are often homoplasious mutations. Insertions/deletions found in the two intergenic spacers, mostly resulting from slipped-strand mispairing, provided relatively reliable phylogenetic information. The mat K coding region, evolving more rapidly than the trnL-trn F spacer and more slowly than the psb A-trn H spacer, produced the best resolved phylogenetic tree. The mat K phylogeny was compared with the phylogeny obtained from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. A refined hypothesis of species phylogeny of section Paeonia was proposed by considering the discordance between the nuclear and cpDNA phylogenies to be results of hybrid speciation followed by inheritance of cpDNA of one parent and fixation of ITS sequences of another parent. The Eurasian and western North American disjunct distribution of the genus may have resulted from interrruption of the continuous distribution of ancestral populations of extant peony species across the Bering land bridge during the Miocene. Pleistocene glaciation may have played an important role in triggering extensive reticulate evolution within section Paeonia and shifting distributional ranges of both parental and hybrid species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.

            The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An overview of STRUCTURE: applications, parameter settings, and supporting software

              Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data.
                Bookmark

                Author and article information

                Contributors
                rao@pku.edu.cn
                Journal
                Ecol Evol
                Ecol Evol
                10.1002/(ISSN)2045-7758
                ECE3
                Ecology and Evolution
                John Wiley and Sons Inc. (Hoboken )
                2045-7758
                30 June 2019
                July 2019
                : 9
                : 14 ( doiID: 10.1002/ece3.2019.9.issue-14 )
                : 8305-8319
                Affiliations
                [ 1 ] School of Life Sciences Peking University Beijing China
                Author notes
                [*] [* ] Correspondence

                Guang‐Yuan Rao, School of Life Sciences, Peking University, Beijing, China.

                Email: rao@ 123456pku.edu.cn

                Author information
                https://orcid.org/0000-0002-3430-2213
                Article
                ECE35406
                10.1002/ece3.5406
                6662313
                31380091
                cb5ac1c5-dd55-4f21-9c24-b6c913e30194
                © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 April 2019
                : 03 June 2019
                : 05 June 2019
                Page count
                Figures: 8, Tables: 5, Pages: 15, Words: 10987
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31470313
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                ece35406
                July 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.6.2 mode:remove_FC converted:29.07.2019

                Evolutionary Biology
                habitat preference,in situ survival,rhodiola sect. prainia,tabula rasa,the qinghai–tibetan plateau

                Comments

                Comment on this article