Blog
About

23
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Sputum 6 Gene Expression Signature Predicts Inflammatory Phenotypes and Future Exacerbations of COPD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The 6 gene expression signature (6GS) predicts inflammatory phenotype, exacerbation risk, and corticosteroid responsiveness in asthma. In COPD, patterns of airway inflammation are similar, suggesting the 6GS may be useful. This study determines the diagnostic and prognostic ability of 6GS in predicting inflammatory phenotypes and exacerbation risk in COPD.

          Methods

          We performed 2 studies: a cross-sectional phenotype prediction study in stable COPD (total N=132; n=34 eosinophilic (E)-COPD, n=42 neutrophilic (N)-COPD, n=39 paucigranulocytic (PG)-COPD, n=17 mixed-granulocytic (MG)-COPD) that assessed 6GS ability to discriminate phenotypes (eosinophilia≥3%; neutrophilia≥61%); and a prospective cohort study (total n=54, n=8 E-COPD; n=18 N-COPD; n=20 PG-COPD; n=8 MG-COPD, n=21 exacerbation prone (≥2/year)) that investigated phenotype and exacerbation prediction utility. 6GS was measured by qPCR and evaluated using multiple logistic regression and area under the curve (AUC). Short-term reproducibility (intra-class correlation) and phenotyping method agreement (κ statistic) were assessed.

          Results

          In the phenotype prediction study, 6GS could accurately identify and discriminate patients with E-COPD from N-COPD (AUC=96.4%; p<0.0001), PG-COPD (AUC=88.2%; p<0.0001) or MG-COPD (AUC=86.2%; p=0.0001), as well as N-COPD from PG-COPD (AUC=83.6%; p<0.0001) or MG-COPD (AUC=87.4%; p<0.0001) and was reproducible. In the prospective cohort study, 6GS had substantial agreement for neutrophilic inflammation (82%, κ=0.63, p<0.001) and moderate agreement for eosinophilic inflammation (78%, κ=0.42, p<0.001). 6GS could significantly discriminate exacerbation prone patients (AUC=77.2%; p=0.034). Higher IL1B levels were associated with poorer lung function and increased COPD severity.

          Conclusion

          6GS can significantly and reproducibly discriminate COPD inflammatory phenotypes and predict exacerbation prone patients and may become a useful molecular diagnostic tool assisting COPD management.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids.

          Airway inflammation and epithelial remodeling are two key features of asthma. IL-13 and other cytokines produced during T helper type 2 cell-driven allergic inflammation contribute to airway epithelial goblet cell metaplasia and may alter epithelial-mesenchymal signaling, leading to increased subepithelial fibrosis or hyperplasia of smooth muscle. The beneficial effects of corticosteroids in asthma could relate to their ability to directly or indirectly decrease epithelial cell activation by inflammatory cells and cytokines. To identify markers of epithelial cell dysfunction and the effects of corticosteroids on epithelial cells in asthma, we studied airway epithelial cells collected from asthmatic subjects enrolled in a randomized controlled trial of inhaled corticosteroids, from healthy subjects and from smokers (disease control). By using gene expression microarrays, we found that chloride channel, calcium-activated, family member 1 (CLCA1), periostin, and serine peptidase inhibitor, clade B (ovalbumin), member 2 (serpinB2) were up-regulated in asthma but not in smokers. Corticosteroid treatment down-regulated expression of these three genes and markedly up-regulated expression of FK506-binding protein 51 (FKBP51). Whereas high baseline expression of CLCA1, periostin, and serpinB2 was associated with a good clinical response to corticosteroids, high expression of FKBP51 was associated with a poor response. By using airway epithelial cells in culture, we found that IL-13 increased expression of CLCA1, periostin, and serpinB2, an effect that was suppressed by corticosteroids. Corticosteroids also induced expression of FKBP51. Taken together, our findings show that airway epithelial cells in asthma have a distinct activation profile and identify direct and cell-autonomous effects of corticosteroid treatment on airway epithelial cells that relate to treatment responses and can now be the focus of specific mechanistic studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Non-eosinophilic corticosteroid unresponsive asthma.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease.

              Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                COPD
                copd
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove
                1176-9106
                1178-2005
                02 July 2020
                2020
                : 15
                : 1577-1590
                Affiliations
                [1 ]Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle , Callaghan, NSW, Australia
                [2 ]Department of Respiratory and Sleep Medicine, John Hunter Hospital , Newcastle, NSW, Australia
                [3 ]Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University , Chengdu, Sichuan Province, People’s Republic of China
                [4 ]School of Nursing and Midwifery, Faculty of Health and Medicine, The University of Newcastle , Callaghan, NSW, Australia
                Author notes
                Correspondence: Katherine J Baines Hunter Medical Research Institute , Level 2 West Wing, Locked Bag 1000, New Lambton, NSW2305, Australia Email katherine.baines@newcastle.edu.au
                Article
                245519
                10.2147/COPD.S245519
                7337431
                © 2020 Baines et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 5, Tables: 5, References: 41, Pages: 14
                Categories
                Original Research

                Respiratory medicine

                copd, airway markers, inflammation, molecular biology, eosinophil

                Comments

                Comment on this article