116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foot Morphological Difference between Habitually Shod and Unshod Runners

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4years, 66±7.1kg & 1.68±0.13m and 78 females whose age, weight & height were 22±1.8years, 55±4.7kg & 1.6±0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6years, 66±8.2kg & 1.72±0.18m and 66 females whose age, weight & height were 23±1.5years, 54±5.6kg & 1.62±0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A kinematic method for footstrike pattern detection in barefoot and shod runners.

          Footstrike patterns during running can be classified discretely into a rearfoot strike, midfoot strike and forefoot strike by visual observation. However, the footstrike pattern can also be classified on a continuum, ranging from 0% to 100% (extreme rearfoot to extreme forefoot) using the strike index, a measure requiring force plate data. When force data are not available, an alternative method to quantify the strike pattern must be used. The purpose of this paper was to quantify the continuum of foot strike patterns using an easily attainable kinematic measure, and compare it to the strike index measure. Force and kinematic data from twenty subjects were collected as they ran across an embedded force plate. Strike index and the footstrike angle were identified for the four running conditions of rearfoot strike, midfoot strike and forefoot strike, as well as barefoot. The footstrike angle was calculated as the angle of the foot with respect to the ground in the sagittal plane. Results indicated that the footstrike angle was significantly correlated with strike index. The linear regression model suggested that strike index can be accurately estimated, in both barefoot and shod conditions, in the absence of force data. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What we can learn about running from barefoot running: an evolutionary medical perspective.

            Barefoot running, which was how people ran for millions of years, provides an opportunity to study how natural selection adapted the human body to run. Because humans evolved to run barefoot, a barefoot running style that minimizes impact peaks and provides increased proprioception and foot strength, is hypothesized to help avoid injury, regardless of whether one is wearing shoes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early hominin foot morphology based on 1.5-million-year-old footprints from Ileret, Kenya.

              Hominin footprints offer evidence about gait and foot shape, but their scarcity, combined with an inadequate hominin fossil record, hampers research on the evolution of the human gait. Here, we report hominin footprints in two sedimentary layers dated at 1.51 to 1.53 million years ago (Ma) at Ileret, Kenya, providing the oldest evidence of an essentially modern human-like foot anatomy, with a relatively adducted hallux, medial longitudinal arch, and medial weight transfer before push-off. The size of the Ileret footprints is consistent with stature and body mass estimates for Homo ergaster/erectus, and these prints are also morphologically distinct from the 3.75-million-year-old footprints at Laetoli, Tanzania. The Ileret prints show that by 1.5 Ma, hominins had evolved an essentially modern human foot function and style of bipedal locomotion.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 July 2015
                2015
                : 10
                : 7
                : e0131385
                Affiliations
                [1 ]Faculty of Sports Science, Ningbo University, Ningbo, China
                [2 ]Department of Engineering Science, University of Auckland, Auckland, New Zealand
                [3 ]Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
                [4 ]School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
                [5 ]Rehabilitation Center, Ningbo Ninth Hospital, Ningbo, China
                Bern University of Applied Sciences, SWITZERLAND
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YS QM JF ZL NF YG. Performed the experiments: YS QM NF YG. Analyzed the data: YS QM ZL YG. Contributed reagents/materials/analysis tools: YS QM JF ZL NF YG. Wrote the paper: YS QM JF ZL NF YG.

                Article
                PONE-D-14-34473
                10.1371/journal.pone.0131385
                4493034
                26148059
                cb67c400-ccb0-44a2-bad6-f4791dba49fe
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 6 August 2014
                : 2 June 2015
                Page count
                Figures: 3, Tables: 5, Pages: 13
                Funding
                The study sponsored by National Natural Science Foundation of China (81301600), K.C.Wong Magna Fund in Ningbo University, and Ningbo Natural Science Foundation (2013A610262). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article